1
|
Ujuagu AF, Sato Y, Lee ETT, Nishizawa S. Design of deep-red emissive forced intercalation-induced light-up peptide as an indicator for the HIV-1 TAR RNA-ligand assay: integration of benzo[c,d]indole-quinoline (BIQ) cyanine dye into Tat peptide. ANAL SCI 2024; 40:2089-2095. [PMID: 39102162 DOI: 10.1007/s44211-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We report on a deep-red emissive fluorogenic peptide probe for human immunodeficiency virus-1 (HIV-1) trans-activation responsive (TAR) RNA as an indicator for fluorescence indicator displacement (FID) assay. The probe design is based on the concept of the forced intercalation of thiazole orange (TO) dyes (FIT) on the peptide backbone, as recently proposed by our group, where the Q (glutamic acid) residue in the Tat peptide (RKKRR-Q-RRR) is replaced with TO as if it were an amino acid surrogate. Here, instead of green emissive TO, we utilized a deep-red emissive benzo[c,d]indole-quinoline (BIQ) cyanine dye developed previously by our group for imaging of nucleolar RNA in living cells. The developed 9-mer FIT peptide (RKKRR-BIQ-RRR; named BIQ-FiLuP) exhibits a significant off-on signaling ability for TAR RNA (λem = 660 nm, I/I0 = 130-fold, Φfree = 0.0009, Φbound = 0.052), and the dissociation constant Kd reaches ca. 1 nM. When used in FID assay, BIQ-FiLuP, like TO-based FiLuP, is able to distinguish between competitive and noncompetitive inhibitors, which has never been demonstrated with all previous indicators for TAR RNA. Deep-red emissive BIQ-FiLuP facilitates the evaluation of green to yellow emissive ligands without suffering from optical interference. The combination use with green emissive TO-based FiLuP (λem = 541 nm) would cover the examination of a wide range of fluorescent test compounds.
Collapse
Affiliation(s)
- Akunna Francess Ujuagu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
| | - En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
2
|
Lee ETT, Sato Y, Ujuagu AF, Nishizawa S. Forced intercalation-induced light-up peptides as fluorogenic indicators for the HIV-1 TAR RNA-ligand assay. Analyst 2024; 149:4179-4186. [PMID: 38860915 DOI: 10.1039/d4an00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Fluorescence indicators capable of binding to human immunodeficiency virus-1 (HIV-1) trans-activation responsive (TAR) RNA are powerful tools for the exploratory studies of the identification of anti-HIV drug candidates. This work presents a new design strategy for fluorogenic indicators with a transactivator of transcription (Tat)-derived peptide based on the forced intercalation of thiazole orange (TO) dyes (FIT). The developed 9-mer FIT peptide (RKKRR-TO-RRR: named FiLuP) features the TO unit integrated onto a Dap (2,3-diaminopropionic acid) residue in the middle of the Tat peptide sequence; the Q (glutamic acid) residue in the Tat peptide (RKKRR-Q-RRR) is replaced with TO as if it were an amino acid surrogate. This facilitates a significant light-up response (450-fold at λem = 541 nm, Φfree = 0.0057, and Φbound = 0.61) upon binding to TAR RNA. The response of FiLuP is highly selective to TAR RNA over other non-cognate RNAs, and FiLuP maintains strong binding affinity (Kd = 1.0 ± 0.6 nM). Significantly, in contrast to previously developed Tat peptide-based FRET probes, FiLuP is able to discriminate between "competitive" and "noncompetitive" inhibitors when used in the fluorescence indicator displacement (FID) assay. The FID assay under stringent screening conditions is also possible, enabling super-strong competitive binders toward TAR RNA to be sieved out.
Collapse
Affiliation(s)
- En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Akunna F Ujuagu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
3
|
Nagasawa R, Onizuka K, Komatsu KR, Miyashita E, Murase H, Ojima K, Ishikawa S, Ozawa M, Saito H, Nagatsugi F. Large-scale analysis of small molecule-RNA interactions using multiplexed RNA structure libraries. Commun Chem 2024; 7:98. [PMID: 38693284 PMCID: PMC11865577 DOI: 10.1038/s42004-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The large-scale analysis of small-molecule binding to diverse RNA structures is key to understanding the required interaction properties and selectivity for developing RNA-binding molecules toward RNA-targeted therapies. Here, we report a new system for performing the large-scale analysis of small molecule-RNA interactions using a multiplexed pull-down assay with RNA structure libraries. The system profiled the RNA-binding landscapes of G-clamp and thiazole orange derivatives, which recognizes an unpaired guanine base and are good probes for fluorescent indicator displacement (FID) assays, respectively. We discuss the binding preferences of these molecules based on their large-scale affinity profiles. In addition, we selected combinations of fluorescent indicators and different ranks of RNA based on the information and screened for RNA-binding molecules using FID. RNAs with high- and intermediate-rank RNA provided reliable results. Our system provides fundamental information about small molecule-RNA interactions and facilitates the discovery of novel RNA-binding molecules.
Collapse
Affiliation(s)
- Ryosuke Nagasawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Miyagi, 980-8577, Japan.
| | - Kaoru R Komatsu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Emi Miyashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirotaka Murase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Kanna Ojima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Shunya Ishikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
| |
Collapse
|
4
|
Ohira K, Sato Y, Nishizawa S. Self-Assembly and Disassembly of Membrane Curvature-Sensing Peptide-Based Deep-Red Fluorescent Probe for Highly Sensitive Sensing of Exosomes. ACS Sens 2023; 8:522-526. [PMID: 36695520 DOI: 10.1021/acssensors.2c02498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With increasing knowledge of the diverse roles of exosomes in biological processes, much attention has been paid to the development of analytical methods for exosome analysis. Here, we developed a new class of amphipathic helical (AH) peptide-based fluorescent probes for highly sensitive detection of exosomes in a mix and read manner. Membrane curvature-sensing AH peptide (ApoC) was coupled with lipophilic tail (C12)-carrying thiazole red (TR) for construction of a self-assembly/disassembly based fluorescence "off-on" sensing system for target exosomes. ApoC-TRC12 has extremely weak emission due to the formation of the aggregates, whereas it becomes emissive in response to the target exosomes through the binding-induced disassembly of ApoC-TRC12. We demonstrated that the C12 unit attached to the TR unit had a favorable effect on both fluorescence response (signal-to-background: S/B) and binding affinity. ApoC-TRC12 was applicable to rapid and simple detection of exosomes with high detection sensitivity (limit of detection ≈ 103 particles/μL).
Collapse
Affiliation(s)
- Kaito Ohira
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
5
|
He M, Sato Y, Nishizawa S. Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells. Analyst 2023; 148:636-642. [PMID: 36602142 DOI: 10.1039/d2an01804g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In contrast to well-established DNA-selective dyes for live cell imaging, RNA-selective dyes have been less developed owing to the challenges of making small molecules have RNA selectivity over DNA. Two kinds of dyes are now commercially available for nucleolar RNA imaging in cells, but these two dyes do not apply to living cells and have limited use in fixed and permeabilized cells. Herein, we report on thiazole orange (TO), a well-known nucleic acid stain, as a promising fluorogenic dye for nucleolar RNA imaging in living cells. TO shows clear response selectivity for RNA over DNA with a significant light-up property upon binding to RNA (λem = 532 nm, I/I0 = 580-fold, and Φbound/Φfree = 380) and is even applicable to wash-free imaging of living cells. More interestingly, 2TO, a regioisomer of TO in which the benzothiazole unit is connected to position 2 in the quinoline ring, performs much better (λem = 532 nm, I/I0 = 430-fold, Φbound/Φfree = 1200), having superior selectivity for RNA in both solution and living cells. The comparison with TO derivatives carrying different substituents at N1 of the quinoline ring reveals that the slight change in the TO framework significantly affects RNA selectivity, photostability and membrane permeability.
Collapse
Affiliation(s)
- Mengmeng He
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Photonics of Trimethine Cyanine Dyes as Probes for Biomolecules. Molecules 2022; 27:molecules27196367. [PMID: 36234904 PMCID: PMC9573451 DOI: 10.3390/molecules27196367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanine dyes are widely used as fluorescent probes in biophysics and medical biochemistry due to their unique photophysical and photochemical properties (their photonics). This review is focused on a subclass of the most widespread and studied cyanine dyes—trimethine cyanines, which can serve as potential probes for biomolecules. The works devoted to the study of the noncovalent interaction of trimethine cyanine dyes with biomolecules and changing the properties of these dyes upon the interaction are reviewed. In addition to the spectral-fluorescent properties, elementary photochemical properties of trimethine cyanines are considered, including: photoisomerization and back isomerization of the photoisomer, generation and decay of the triplet state, and its quenching by oxygen and other quenchers. The influence of DNA and other nucleic acids, proteins, and other biomolecules on these properties is covered. The interaction of a monomer dye molecule with a biomolecule usually leads to a fluorescence growth, damping of photoisomerization (if any), and an increase in intersystem crossing to the triplet state. Sometimes aggregation of dye molecules on biomolecules is observed. Quenching of the dye triplet state in a complex with biomolecules by molecular oxygen usually occurs with a rate constant much lower than the diffusion limit with allowance for the spin-statistical factor 1/9. The practical application of trimethine cyanines in biophysics and (medical) biochemistry is also considered. In conclusion, the prospects for further studies on the cyanine dye–biomolecule system and the development of new effective dye probes (including probes of a new type) for biomolecules are discussed.
Collapse
|
7
|
Selective Fluorescent Probes for High-Throughput Functional Diagnostics of the Human Multidrug Transporter P-Glycoprotein (ABCB1). Int J Mol Sci 2022; 23:ijms231810599. [PMID: 36142507 PMCID: PMC9503576 DOI: 10.3390/ijms231810599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The multidrug transporter ABCB1 (MDR1, Pgp) plays an important role in the absorption, distribution, metabolism, and elimination of a wide range of pharmaceutical compounds. Functional investigation of the ABCB1 expression is also essential in many diseases, including drug-resistant cancer, inflammatory conditions, or Alzheimer disease. In this study, we examined the potential interaction of the ABCB1 multidrug transporter with a group of commercially available viability dyes that are generally considered not to penetrate into intact cells. Here, we demonstrate that the slow cellular accumulation of TO-PRO™-1 (TP1) or TO-PRO™-3 (TP3) was strongly inhibited by ABCB1-dependent dye extrusion. TP1/3 dye accumulation was not affected by the presence of ABCC1 or ABCG2, while this uptake was increased to the level in the ABCB1-negative cells by a specific P-glycoprotein inhibitor, Tariquidar. We suggest that TP compounds can be used as highly sensitive, selective, non-toxic, and stable dyes to examine the functional expression and properties of the ABCB1 multidrug transporter, especially in microplate-based high-throughput flow cytometry assays. In addition, we demonstrate the applicability of the TP dyes to efficiently select and separate even a very low number of Pgp-expressing intact cells.
Collapse
|
8
|
Sato Y, Miura H, Tanabe T, Okeke CU, Kikuchi A, Nishizawa S. Fluorescence Sensing of the Panhandle Structure of the Influenza A Virus RNA Promoter by Thiazole Orange Base Surrogate-Carrying Peptide Nucleic Acid Conjugated with Small Molecule. Anal Chem 2022; 94:7814-7822. [PMID: 35604144 DOI: 10.1021/acs.analchem.1c05488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new class of triplex-forming peptide nucleic acid (PNA)-based fluorogenic probes for sensing of the panhandle structure of the influenza A virus (IAV) RNA promoter region. Here, a small molecule (DPQ) capable of selectively binding to the internal loop structure was conjugated with triplex-forming forced intercalation of the thiazole orange (tFIT) probe with natural PNA nucleobases. The resulting conjugate, tFIT-DPQ, showed a significant light-up response (83-fold) upon strong (Kd = 107 nM) and structure-selective binding to the IAV RNA promoter region under physiological conditions (pH 7.0, 100 mM NaCl). We demonstrated the conjugation of these two units through the suitable spacer was key to show useful binding and fluorogenic signaling functions. tFIT-DPQ facilitated the sensitive and selective detection of IAV RNA based on its binding to the promoter region. Furthermore, we found that tFIT-DPQ could work as a sensitive indicator for screening of test compounds targeting the IAV RNA promoter region in the fluorescence indicator displacement assay.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiromasa Miura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takaaki Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Chioma Uche Okeke
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Samani ZR, Mehranpour A. An efficient route to the synthesis of novel zwitterionic pyridinium-cyanopropenides with 3-heteroaryl-substituted trimethinium salts. RSC Adv 2022; 12:16229-16234. [PMID: 35733684 PMCID: PMC9150544 DOI: 10.1039/d2ra02465a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, eight new zwitterionic derivatives were synthesized using a simple design method from the reaction of various 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl 2-cyanoacetate in excellent yields in the presence of triethylamine in ethanol at reflux. The molecular structures of the new compounds were confirmed by IR, UV/vis, mass, 1H, and 13C NMR spectra as well as by elemental analyses. Synthesis of new zwitterionic derivatives via the reaction of 2-substituted 1,3-bis(dimethylamino)-trimethinium salts with malononitrile or ethyl cyanoacetate in the presence of Et3N in ethanol at reflux.![]()
Collapse
Affiliation(s)
- Ziba Rafiee Samani
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
10
|
NISHIZAWA S, LEE ETT, YOSHINO Y, YAJIMA S, ROKUGAWA M, SATO Y. Molecular Design of Fluorogenic Probes for Targeting rRNA: Indicator in FID Assay and Dye for Imaging of Nucleolar RNA in Living Cells. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Seiichi NISHIZAWA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | | | - Yukina YOSHINO
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Sayaka YAJIMA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Masafumi ROKUGAWA
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| | - Yusuke SATO
- Department of Chemistry, Graduate School of Sciences, Tohoku University
| |
Collapse
|
11
|
Sato Y, Igarashi Y, Suzuki M, Higuchi K, Nishizawa S. Deep-red fluorogenic cyanine dyes carrying an amino group-terminated side chain for improved RNA detection and nucleolar RNA imaging. RSC Adv 2021; 11:35436-35439. [PMID: 35493132 PMCID: PMC9042821 DOI: 10.1039/d1ra05872j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
The introduction of an amino-group-terminated side chain into deep-red emissive benzo[c,d]indole–quinoline monomethine cyanine dye has led to the improved detection of RNAs as well as the imaging of nucleolar RNAs in cells. The introduction of an amino-group-terminated side chain into deep-red emissive benzo[c,d]indole–quinoline monomethine cyanine dye has led to the improved detection of RNAs as well as the imaging of nucleolar RNAs in cells.![]()
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan +81-22-795-6552 +81-22-795-6549
| | - Yugo Igarashi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan +81-22-795-6552 +81-22-795-6549
| | - Michiyuki Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan +81-22-795-6552 +81-22-795-6549
| | - Kei Higuchi
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan +81-22-795-6552 +81-22-795-6549
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University Aoba-ku Sendai 980-8578 Japan +81-22-795-6552 +81-22-795-6549
| |
Collapse
|
12
|
Parameswaran P, Ranjan N, Flora SJS. New Approaches in Sensing and Targeting Bacterial rRNA A-site. Med Chem 2021; 17:299-309. [PMID: 31660840 DOI: 10.2174/1573406415666191011160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022]
Abstract
New chemical agents that could combat increasing antibiotic resistance are urgently needed. In this mini-review, an old but highly relevant RNA sequence which is crucial for the continuation of bacterial life-cycle is covered. Some of the most significant advances of the last decade in sensing and targeting the bacterial rRNA A-site: a well-validated binding site of proverbially known aminoglycoside antibiotics are described. Some of the major advances in direct sensing of the bacterial decoding side (A-site) are described and also new fluorescent molecules that are capable of detecting lead compounds through high-throughput assays by displacement of fluorescent probe molecules are highlighted. Lastly, some of the recently discovered non-aminoglycoside small molecule binders of bacterial rRNA A-site as a new class of molecules that could provide future scaffolds and molecules for developing new antibacterial agents have been discussed.
Collapse
Affiliation(s)
- Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Raebareli, New Transit Campus, Lucknow 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)- Raebareli, New Transit Campus, Lucknow 226002, India
| | - Swaran J S Flora
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, India
| |
Collapse
|
13
|
Ilina K, Henary M. Cyanine Dyes Containing Quinoline Moieties: History, Synthesis, Optical Properties, and Applications. Chemistry 2021; 27:4230-4248. [PMID: 33137212 PMCID: PMC9832344 DOI: 10.1002/chem.202003697] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/23/2020] [Indexed: 01/13/2023]
Abstract
Cyanine dyes carrying quinoline moieties are an important class of organic molecules that are of great interest for applications in many fields like medicine, pharmacology, and engineering. Despite their exceptional properties, such as stability, high molar extinction coefficients, and high pH-sensitivity, this class of dyes has been less analyzed and reviewed in the last few decades. Therefore, this review article focuses on discussing the history of quinoline compounds, various synthetic routes to prepare quinolinium salts and symmetrical and asymmetrical mono-, di-, tri-, penta- and heptamethine cyanine dyes, containing quinoline moieties, together with their optical properties and applications as photosensitizers in photodynamic therapy, probes in biomolecules for labeling of nucleic acids, as well as imaging agents.
Collapse
Affiliation(s)
- Kristina Ilina
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE Atlanta, GA 30303 (USA)
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE Atlanta, GA 30303 (USA),Center for Diagnostics and Therapeutics. Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303 (USA)
| |
Collapse
|
14
|
Lee ETT, Sato Y, Nishizawa S. Small molecule-PNA oligomer conjugates for rRNA A-site at neutral pH for FID assays. Chem Commun (Camb) 2020; 56:14976-14979. [PMID: 33174546 DOI: 10.1039/d0cc06084d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A triplex-forming PNA oligomer conjugated with a naphthyridine derivative (ATMND-C2-NH2) showed high selectivity and strong binding for the bacterial rRNA A-site at pH 7.0 (Kd = 190 ± 72 nM), which was accompanied by fluorogenic signaling that allowed the potential use of this conjugate probe in fluorescent indicator displacement assays.
Collapse
Affiliation(s)
- En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
15
|
Sato Y. Design of Fluorescent Peptide Nucleic Acid Probes Carrying Cyanine Dyes for Targeting Double-Stranded RNAs for Analytical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Del Mundo IMA, Cho EJ, Dalby KN, Vasquez KM. A 'light-up' intercalator displacement assay for detection of triplex DNA stabilizers. Chem Commun (Camb) 2020; 56:1996-1999. [PMID: 31960843 PMCID: PMC7323859 DOI: 10.1039/c9cc08817b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we developed a coralyne-based, 'light-up' intercalator displacement assay to identify molecular stabilizers of triplex DNA using a sequence from a chromosomal breakpoint hotspot in the human c-MYC oncogene. Its potential to identify triplex DNA ligands was demonstrated using BePI and doxorubicin. Identification of triplex-interacting ligands may allow the regulation of genetic instability in human genomes.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX, USA.
| | | | | | | |
Collapse
|
17
|
Sato Y, Aiba Y, Yajima S, Tanabe T, Higuchi K, Nishizawa S. Strong Binding and Off–On Signaling Functions of Deep‐Red Fluorescent TO‐PRO‐3 for Influenza A Virus RNA Promoter Region. Chembiochem 2019; 20:2752-2756. [DOI: 10.1002/cbic.201900331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yusuke Sato
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Yuri Aiba
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Sayaka Yajima
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Takaaki Tanabe
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Kei Higuchi
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| | - Seiichi Nishizawa
- Department of ChemistryGraduate School of ScienceTohoku University Sendai 980-8578 Japan
| |
Collapse
|