1
|
Pöverlein MC, Hulm A, Dietschreit JCB, Kussmann J, Ochsenfeld C, Kaila VRI. QM/MM Free Energy Calculations of Long-Range Biological Protonation Dynamics by Adaptive and Focused Sampling. J Chem Theory Comput 2024; 20:5751-5762. [PMID: 38718352 DOI: 10.1021/acs.jctc.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Water-mediated proton transfer reactions are central for catalytic processes in a wide range of biochemical systems, ranging from biological energy conversion to chemical transformations in the metabolism. Yet, the accurate computational treatment of such complex biochemical reactions is highly challenging and requires the application of multiscale methods, in particular hybrid quantum/classical (QM/MM) approaches combined with free energy simulations. Here, we combine the unique exploration power of new advanced sampling methods with density functional theory (DFT)-based QM/MM free energy methods for multiscale simulations of long-range protonation dynamics in biological systems. In this regard, we show that combining multiple walkers/well-tempered metadynamics with an extended system adaptive biasing force method (MWE) provides a powerful approach for exploration of water-mediated proton transfer reactions in complex biochemical systems. We compare and combine the MWE method also with QM/MM umbrella sampling and explore the sampling of the free energy landscape with both geometric (linear combination of proton transfer distances) and physical (center of excess charge) reaction coordinates and show how these affect the convergence of the potential of mean force (PMF) and the activation free energy. We find that the QM/MM-MWE method can efficiently explore both direct and water-mediated proton transfer pathways together with forward and reverse hole transfer mechanisms in the highly complex proton channel of respiratory Complex I, while the QM/MM-US approach shows a systematic convergence of selected long-range proton transfer pathways. In this regard, we show that the PMF along multiple proton transfer pathways is recovered by combining the strengths of both approaches in a QM/MM-MWE/focused US (FUS) scheme and reveals new mechanistic insight into the proton transfer principles of Complex I. Our findings provide a promising basis for the quantitative multiscale simulations of long-range proton transfer reactions in biological systems.
Collapse
Affiliation(s)
- Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Johannes C B Dietschreit
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhou Y, Tang S, Chen Z, Zhou Z, Huang J, Kang XW, Zou S, Wang B, Zhang T, Ding B, Zhong D. Origin of the multi-phasic quenching dynamics in the BLUF domains across the species. Nat Commun 2024; 15:623. [PMID: 38245518 PMCID: PMC10799861 DOI: 10.1038/s41467-023-44565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.
Collapse
Affiliation(s)
- Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Chen Z, Kang XW, Zhou Y, Zhou Z, Tang S, Zou S, Wang K, Huang J, Ding B, Zhong D. Dissecting the Ultrafast Stepwise Bidirectional Proton Relay in a Blue-Light Photoreceptor. J Am Chem Soc 2023; 145:3394-3400. [PMID: 36722850 DOI: 10.1021/jacs.2c10206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.
Collapse
Affiliation(s)
- Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
5
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
6
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
7
|
Kaila VRI. Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I. Acc Chem Res 2021; 54:4462-4473. [PMID: 34894649 PMCID: PMC8697550 DOI: 10.1021/acs.accounts.1c00524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Biological energy conversion is catalyzed by membrane-bound proteins
that transduce chemical or light energy into energy forms that power
endergonic processes in the cell. At a molecular level, these catalytic
processes involve elementary electron-, proton-, charge-, and energy-transfer
reactions that take place in the intricate molecular machineries of
cell respiration and photosynthesis. Recent developments in structural
biology, particularly cryo-electron microscopy (cryoEM), have resolved
the molecular architecture of several energy transducing proteins,
but detailed mechanistic principles of their charge transfer reactions
still remain poorly understood and a major challenge for modern biochemical
research. To this end, multiscale molecular simulations provide a
powerful approach to probe mechanistic principles on a broad range
of time scales (femtoseconds to milliseconds) and spatial resolutions
(101–106 atoms), although technical challenges
also require balancing between the computational accuracy, cost, and
approximations introduced within the model. Here we discuss how the
combination of atomistic (aMD) and hybrid quantum/classical molecular
dynamics (QM/MM MD) simulations with free energy (FE) sampling methods
can be used to probe mechanistic principles of enzymes responsible
for biological energy conversion. We present mechanistic explorations
of long-range proton-coupled electron transfer (PCET) dynamics in
the highly intricate respiratory chain enzyme Complex I, which functions
as a redox-driven proton pump in bacterial and mitochondrial respiratory
chains by catalyzing a 300 Å fully reversible PCET process. This
process is initiated by a hydride (H–) transfer
between NADH and FMN, followed by long-range (>100 Å) electron
transfer along a wire of 8 FeS centers leading to a quinone biding
site. The reduction of the quinone to quinol initiates dissociation
of the latter to a second membrane-bound binding site, and triggers
proton pumping across the membrane domain of complex I, in subunits
up to 200 Å away from the active site. Our simulations across
different size and time scales suggest that transient charge transfer
reactions lead to changes in the internal hydration state of key regions,
local electric fields, and the conformation of conserved ion pairs,
which in turn modulate the dynamics of functional steps along the
reaction cycle. Similar functional principles, which operate on much
shorter length scales, are also found in some unrelated proteins,
suggesting that enzymes may employ conserved principles in the catalysis
of biological energy transduction processes.
Collapse
Affiliation(s)
- Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
The electron transport chain of mitochondria is initiated by the respiratory complex I that converts chemical energy into a proton motive force to power synthesis of adenosine triphosphate. On a chemical level, complex I catalyzes elementary electron and proton transfer processes that couple across large molecular distances of >300 Å. However, under low oxygen concentrations, the respiratory chain operates in reverse mode and produces harmful reactive oxygen species. To avoid cell damage, the mitochondrial complex I transitions into a deactive state that inhibits turnover by molecular principles that remain elusive. By combining large-scale molecular simulations with cryo-electron microscopy data, we show here that complex I deactivation blocks the communication between proton pumping and redox modules by conformational and hydration changes. Cellular respiration is powered by membrane-bound redox enzymes that convert chemical energy into an electrochemical proton gradient and drive the energy metabolism. By combining large-scale classical and quantum mechanical simulations with cryo-electron microscopy data, we resolve here molecular details of conformational changes linked to proton pumping in the mammalian complex I. Our data suggest that complex I deactivation blocks water-mediated proton transfer between a membrane-bound quinone site and proton-pumping modules, decoupling the energy-transduction machinery. We identify a putative gating region at the interface between membrane domain subunits ND1 and ND3/ND4L/ND6 that modulates the proton transfer by conformational changes in transmembrane helices and bulky residues. The region is perturbed by mutations linked to human mitochondrial disorders and is suggested to also undergo conformational changes during catalysis of simpler complex I variants that lack the “active”-to-“deactive” transition. Our findings suggest that conformational changes in transmembrane helices modulate the proton transfer dynamics by wetting/dewetting transitions and provide important functional insight into the mammalian respiratory complex I.
Collapse
|
9
|
Abstract
Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na+ ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts. We also discuss bacterial supercomplexes, which provide central energy transduction systems in several bacteria, including important pathogens, and which could open up possible avenues for treatment of disease.
Collapse
|
10
|
Mühlbauer ME, Saura P, Nuber F, Di Luca A, Friedrich T, Kaila VRI. Water-Gated Proton Transfer Dynamics in Respiratory Complex I. J Am Chem Soc 2020; 142:13718-13728. [PMID: 32643371 PMCID: PMC7659035 DOI: 10.1021/jacs.0c02789] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The respiratory complex I transduces
redox energy into an electrochemical
proton gradient in aerobic respiratory chains, powering energy-requiring
processes in the cell. However, despite recently resolved molecular
structures, the mechanism of this gigantic enzyme remains poorly understood.
By combining large-scale quantum and classical simulations with site-directed
mutagenesis and biophysical experiments, we show here how the conformational
state of buried ion-pairs and water molecules control the protonation
dynamics in the membrane domain of complex I and establish evolutionary
conserved long-range coupling elements. We suggest that an electrostatic
wave propagates in forward and reverse directions across the 200 Å
long membrane domain during enzyme turnover, without significant dissipation
of energy. Our findings demonstrate molecular principles that enable
efficient long-range proton–electron coupling (PCET) and how
perturbation of this PCET machinery may lead to development of mitochondrial
disease.
Collapse
Affiliation(s)
- Max E Mühlbauer
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Franziska Nuber
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Andrea Di Luca
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| |
Collapse
|
11
|
Wang K, Yang L, Wang S, Guo L, Ma J, Tang J, Bo W, Wu Z, Zeng B, Gong Y. Transient proton transfer of base pair hydrogen bonds induced by intense terahertz radiation. Phys Chem Chem Phys 2020; 22:9316-9321. [DOI: 10.1039/d0cp01247e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intense terahertz radiation was applied to trigger transient proton transfer in DNA base pairs through quantum simulation.
Collapse
Affiliation(s)
- Kaicheng Wang
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Lixia Yang
- School of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Shaomeng Wang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore
| | - Lianghao Guo
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jialu Ma
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jingchao Tang
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Wenfei Bo
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Zhe Wu
- School of Physics
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Baoqing Zeng
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Yubin Gong
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| |
Collapse
|
12
|
Goings JJ, Hammes-Schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J Am Chem Soc 2019; 141:20470-20479. [DOI: 10.1021/jacs.9b11196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|