1
|
Teuffel J, Mukherjee G, Han SB, Elstner M, Wade RC. On the determinants of electron transfer reorganization energy in a cytochrome P450: cytochrome b5 complex. A combined quantum mechanics and molecular dynamics simulation study. J Chem Phys 2025; 162:195101. [PMID: 40377195 DOI: 10.1063/5.0248701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
The electron transfer steps in the catalytic cycle of cytochrome P450 (CYP) enzymes, ubiquitous proteins with key roles in processes such as drug metabolism and steroidogenesis, are often rate-limiting. To predict ET rates from atomistic molecular dynamics simulations using Marcus theory, values of the reaction free energy ΔG0 and the reorganization free energy λ are required from either experiments or computations. For the reduction of cytochrome P450 17A1 (CYP17A1) by the secondary redox protein cytochrome b5 (CYb5), a critical step in the regulation of steroidogenesis, experimental measurements of λ are not available. We here describe the computation of λ for this system from a combination of molecular mechanics/molecular dynamics simulations and quantum mechanics computations. Our results show that a quantum mechanical treatment of the redox-active cofactors is necessary, even though the surrounding protein and solvent, which are modeled classically, contribute most to the reorganization energy. The values of λ computed for structural ensembles corresponding to two predicted binding modes of the proteins are 1.23 and 1.16 eV. We find that the λ values computed for the individual soluble globular domains of the two proteins sum to approximately the λ values computed for the membrane-bound CYP17A1-CYb5 complex, indicating that additivity can be invoked in a computationally efficient approach to estimating λ values for such protein-protein complexes.
Collapse
Affiliation(s)
- J Teuffel
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty for Engineering Sciences, Heidelberg University, Heidelberg, Germany
- Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp), Heidelberg University, Heidelberg, Germany
| | - G Mukherjee
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - S B Han
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - M Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - R C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty for Engineering Sciences, Heidelberg University, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Guo J, Hou Q, Tan Y, Fu R, Huang X, Cao C. Membrane Proteins in Nanodiscs: Methods and Applications. ChemMedChem 2025; 20:e202400775. [PMID: 39825697 DOI: 10.1002/cmdc.202400775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities. This review outlines the substantial advancements in nanodisc methodologies and applications from 2018 to 2024. We cover the development of various nanodisc models, as well as structural and functional studies of membrane proteins that utilize nanodiscs, highlighting their medical applications.
Collapse
Affiliation(s)
- Jiaxu Guo
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinghan Hou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, US
| | - Yulin Tan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ruoheng Fu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuanwei Huang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
4
|
Farrelly MD, Martin LL, Thang SH. Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry 2021; 27:12922-12939. [PMID: 34180107 DOI: 10.1002/chem.202101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins (MPs) play a pivotal role in cellular function and are therefore predominant pharmaceutical targets. Although detailed understanding of MP structure and mechanistic activity is invaluable for rational drug design, challenges are associated with the purification and study of MPs. This review delves into the historical developments that became the prelude to currently available membrane mimetic technologies before shining a spotlight on polymer nanodiscs. These are soluble nanosized particles capable of encompassing MPs embedded in a phospholipid ring. The expanding range of reported amphipathic polymer nanodisc materials is presented and discussed in terms of their tolerance to different solution conditions and their nanodisc properties. Finally, the analytical scope of polymer nanodiscs is considered in both the demonstration of basic nanodisc parameters as well as in the elucidation of structures, lipid-protein interactions, and the functional mechanisms of reconstituted membrane proteins. The final emphasis is given to the unique benefits and applications demonstrated for native nanodiscs accessed through a detergent free process.
Collapse
Affiliation(s)
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| |
Collapse
|
5
|
Krishnarjuna B, Yamazaki T, Anantharamaiah GM, Ramamoorthy A. Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing. Chem Commun (Camb) 2021; 57:4819-4822. [PMID: 33982687 PMCID: PMC8136615 DOI: 10.1039/d1cc01018b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome-P450-reductase transfers electrons to cytochrome-P450 through its flavin mononucleotide binding domain (FBD). Despite the importance of membrane-anchoring for FBD function, studies have focused on its soluble domain lacking the transmembrane-domain. Here we demonstrate that the reconstitution of FBD in nanodiscs enables high-resolution NMR measurements and renders a stable conformation.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
6
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Ikeda K, Horiuchi A, Yoshino M, Shimizu C, Nakao H, Nakano M. Amphipathic Peptide-Phospholipid Nanofibers: Phospholipid Specificity and Dependence on Concentration and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:713-721. [PMID: 33400880 DOI: 10.1021/acs.langmuir.0c02819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of nanoassemblies is an important part of the development of new materials for applications in nanomedicine and biosensors. In our previous study, cysteine substitution of the apolipoprotein A-I-derived peptide 18A at residue 11, 18A[A11C], bound to 1-palmitoyl-2-oleoylphosphatidylcholine to form fibrous aggregates at a lipid-to-peptide molar ratio of ≤2 and a fiber diameter of 10-20 nm. However, the mechanisms underlying the lipid-peptide interactions that enable nanofiber formation remain unclear. Here, we evaluated the phospholipid specificity, concentration dependence, and temperature dependence of the formation of 18A[A11C]-lipid nanofibers. Nanofibers were found to form in the presence of specific phospholipids and have a constant lipid/peptide stoichiometry of 1.2 ± 0.2. Moreover, an increase in the length of the acyl chain in phosphatidylcholines was found to increase the structural stability of the nanofibers. These results indicate that specific molecular interactions between peptides and both the headgroups and acyl chains of phospholipids are involved in nanofiber formation. Furthermore, the formation and disassembly of the nanofibers were reversibly controlled by changes in temperature and concentration. The results of the present study provide an insight into the creation of nanoassembling structures.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Ayame Horiuchi
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Misa Yoshino
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Chinatsu Shimizu
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
8
|
An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase. Commun Biol 2021; 4:55. [PMID: 33420418 PMCID: PMC7794467 DOI: 10.1038/s42003-020-01568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs.
Collapse
|
9
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Li J, Zhou Y, Tang Y, Li W, Tu Y. Dissecting the Structural Plasticity and Dynamics of Cytochrome P450 2B4 by Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:5026-5035. [PMID: 32808774 DOI: 10.1021/acs.jcim.0c00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plasticity of cytochromes P450 (P450s) is known to contribute significantly to their catalytic capacity of metabolizing various substrates. Although numerous studies have been performed, factors governing the plasticity and dynamics of P450s are still not fully understood. In this study, taking CYP2B4 as an example, we dissect the protein plasticity and dynamics in different environments. CYP2B4 is featured by a high degree of plasticity, which exhibits open, closed, and intermediate states. By analyzing the CYP2B4 crystal structures, we identified the structural features for the closed, open, and intermediate states. Interestingly, formation of the dimer structure was found in the open and intermediate states. The subsequent molecular dynamics (MD) simulations of the open structure in water confirmed the importance of the dimer form in stabilizing the open conformations. MD simulations of the closed and open structures in the membrane environment and the free energies for opening the F-G cassette obtained from the umbrella sampling calculations indicate that the membrane environment is important for stabilizing the F-G cassette. The dynamical network analysis indicates that Asp105 on the B-C loop plays an important role in transiting the structure from the open to the intermediate state. Our results thus unveil the mechanisms of dimer formation and open-to-intermediate transition for CYP2B4 in the water and membrane environments.
Collapse
Affiliation(s)
- Junhao Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Yang Zhou
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Zhang C, Catucci G, Di Nardo G, Gilardi G. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase. Int J Biol Macromol 2020; 164:510-517. [PMID: 32698066 DOI: 10.1016/j.ijbiomac.2020.07.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Cytochromes P450 constitute a large superfamily of monooxygenases involved in many metabolic pathways. Most of them are not self-sufficient and need a reductase protein to provide the electrons necessary for catalysis. It was shown that the redox partner plays a role in the modulation of the structure and function of some bacterial P450 enzymes. Here, the effect of NADPH-cytochrome reductase (CPR) on human aromatase (Aro) is studied for what concerns its role in substrate binding. Pre-steady-state kinetic experiments indicate that both the substrate binding rates and the percentage of spin shift detected for aromatase are increased when CPR is present. Moreover, aromatase binds the substrate through a conformational selection mechanism, suggesting a possible effector role of CPR. The thermodynamic parameters for the formation of the CPR-Aro complex were studied by isothermal titration calorimetry. The dissociation constant of the complex formation is 4.5 folds lower for substrate-free compared to the substrate-bound enzyme. The enthalpy change observed when the CPR-Aro complex forms in the absence of the substrate are higher than in its presence, indicating that more interactions are formed/broken in the former case. Taken together, our data confirm that CPR has a role in promoting aromatase conformation optimal for substrate binding.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| |
Collapse
|
12
|
Lee KY, Fang Z, Enomoto M, Gasmi-Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020; 59:11037-11045. [PMID: 32227412 PMCID: PMC7395670 DOI: 10.1002/anie.202001758] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 11/07/2022]
Abstract
KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.
Collapse
Affiliation(s)
- Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Le Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
13
|
Lee K, Fang Z, Enomoto M, Gasmi‐Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane‐Associated Homodimers of GTP‐ and GDP‐Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ki‐Young Lee
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Zhenhao Fang
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | | - Le Zheng
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular PharmacologyNew York University School of Medicine, and Perlmutter Cancer CenterNew York University Langone Health New York NY 10016 USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | |
Collapse
|
14
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Mavromoustakos T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183142. [PMID: 31830465 DOI: 10.1016/j.bbamem.2019.183142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases and hypertension in particular are major health risks worldwide and the improvement on their treatment will be beneficial for the human health. AT1R antagonists belong to the sartans family that targets the renin-angiotensin aldosterone system (RAAS) through blocking the hormone angiotensin II to exert its detrimental effects in pathological states. As a consequence, they are beneficial to treat hypertension, diabetes related kidney failure and hyperaemic episodes. Long unbiased Molecular Dynamics (MD) simulations are performed in order to explore candesartan's possible 2D and 3D diffusion mechanisms towards AT1R receptor. 3D diffusion mechanism is referred to the direct binding of the AT1 antagonist candesartan to the AT1R 3D structure (PDB ID: 4YAY). 2D diffusion mechanism involves first, the incorporation of candesartan in the bilayer core and then its localization on the AT1R binding cavity, through a diffusion mechanism. The obtained results indicate that membranes interact significantly with the neutral form of candesartan, which is indeed approaching the receptors' active site through diffusion via the lipids. On the other hand, the deprotonated form of the drug is interacting with AT1R's extracellular loop and fails to enter the membrane, pointing out the importance of the pH microenvironment around the receptor. To validate the calculated diffusion coefficients of the drug in the lipid bilayers 2D DOSY NMR experiments were recorded and they were in good agreement. Information on the impact that has the interaction of candesartan with the membrane is very important for the rationally design and development of potent ARBs. Thus, its conformational features as well as its localization in the membrane core have to be thoroughly explored.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece.
| |
Collapse
|
15
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
16
|
Conformational turn triggers regio-selectivity in the bioactivation of thiophene-contained compounds mediated by cytochrome P450. J Biol Inorg Chem 2019; 24:1023-1033. [PMID: 31506822 DOI: 10.1007/s00775-019-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
In the present work, we performed Density Functional Theory calculations to explore the bioactivation mechanism of thiophene-containing molecules mediated by P450s. For this purpose, relatively large size compounds, 2,5-diaminothiophene derivatives were selected particularly for this investigation. Here we found the successive regio-selectivity triggered by conformational turn played a significant role in the occurrence of bioactivation. 2,5-Diaminothiophene was oxidized to a 2,5-diimine thiophene-reactive intermediate by Compound I (Cpd I) through successive activations of two N-H bonds (H3-N11 and H1-N6). This reaction exhibited three special characteristics: (1) self-controlled regio-selectivity during the oxidation process. There was a large scale of conformational turn in the abstraction of the first H atom which triggers the selection of the second H for abstraction. (2) Proton-shuttle mechanism. In high spin (HS) state, proton-shuttle mechanism was observed for the abstraction of the second H atom. (3) Spin-selective manner. In protein environment, the energy barrier in HS state was much lower than that in low spin state. The novel proposed bioactivation mechanism of 2,5-diaminothiophene compounds can help us in rational design of thiophene-contained drugs avoiding the occurrence of bioactivation.
Collapse
|