1
|
Liu YY, Zhai YT. Iron-Catalyzed One-Pot Cascade Reactions of Oximes with Inactivated Saturated Ketones: Entry to Highly Substituted Pyridines. J Org Chem 2024; 89:17598-17608. [PMID: 39509683 DOI: 10.1021/acs.joc.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An iron-catalyzed oxidative [3 + 3] annulation of oxime esters with inactivated saturated ketones is described. This cascade strategy allows one-step rapid synthesis of various structurally important pyridines through an oxidative dehydrogenation/annulation/oxidative aromatization sequence via direct α,β-dehydrogenation of simple saturated ketones followed by annulation with oximes. This method shows good functional group tolerance, readily accessible starting materials, a wide substrate scope, high chemoselectivity, and no need for extra stoichiometric oxidant and is also applicable to the late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Yan-Yun Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yu-Ting Zhai
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| |
Collapse
|
2
|
Zhang Z, Su B, Zhong F, Zhu Y, Zhou Y, Mai S, Tao H. Ru(II)-Catalyzed Carboamination of Olefins with α-Carbonyl Sulfoxonium Ylides. J Org Chem 2024; 89:5382-5391. [PMID: 38556754 DOI: 10.1021/acs.joc.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The first ruthenium-catalyzed carboamination of olefins with α-carbonyl sulfoxonium ylides is reported. The utilization of an inexpensive ruthenium catalyst enables the concise synthesis of pharmaceutically important isoindolin-1-ones, which possess both a stereogenic center and β-carbonyl side chain. This method is mild, efficient, and scalable and allows for the coupling of a wide range of aryl-, heteroaryl-, alkenyl-, and alkyl-substituted sulfoxonium ylides. Moreover, the carbonyl side chain in the resulting product provides a good handle for downstream transformations. For mechanistic studies, a ruthacyle complex is obtained and proven to be the key intermediate in both catalytic and stoichiometric reactions.
Collapse
Affiliation(s)
- Zhenwei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Borong Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fuhong Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Shaoyu Mai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China
| |
Collapse
|
3
|
Li A, Li C, Yang T, Yang Z, Liu Y, Li L, Tang K, Zhou C. Electrochemical Synthesis of Benzo[ d]imidazole via Intramolecular C(sp 3)-H Amination. J Org Chem 2023; 88:1928-1935. [PMID: 34918925 DOI: 10.1021/acs.joc.1c01842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical dehydrogenative amination for the synthesis of benzimidazoles was developed. This electrosynthesis method could address the limitations of the C(sp3)-H intramolecular amination synthesis reaction and provide novel access to obtain 1,2-disubstituted benzimidazoles without transition metals and oxidants. Under undivided electrolytic conditions, various benzimidazole derivatives could be synthesized, exhibiting functional group tolerance.
Collapse
Affiliation(s)
- An Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Caohui Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Tao Yang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Liu
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - LiJun Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - KeWen Tang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| | - Congshan Zhou
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation, College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414000, P. R. China
| |
Collapse
|
4
|
Huang L, Zheng L, Zhou Z, Chen Y. Copper-catalyzed multiple oxidation and cycloaddition of aryl-alkyl ketones (alcohols) for the synthesis of 4-acyl- and 4-diketo-1,2,3-triazoles. Chem Commun (Camb) 2022; 58:3342-3345. [PMID: 35188148 DOI: 10.1039/d1cc06477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu/TEMPO-catalyzed tandem multiple oxidative dehydrogenation and cycloaddition has been developed, which affords 4-acyl-1,2,3-triazoles and 4-diketo-1,2,3-triazoles from readily-available aryl-alkyl ketones (or alcohols) and different organic azides. Moreover, the reaction used environmentally friendly dimethyl carbonate (DMC) as the solvent and air as the oxidant, and H2O was the only by-product, so it provides a green and practical synthetic method for 1,2,3-triazoles.
Collapse
Affiliation(s)
- Liangfeng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Lei Zheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
5
|
Du X, Hu Y, Yang D, Huang D, Yang W, Wu H, Zhao H. Isoindolinone synthesis through Rh/Cu-catalyzed oxidative C-H/N-H annulation of N-methoxy benzamides with saturated ketones. Org Biomol Chem 2022; 20:783-789. [PMID: 34989388 DOI: 10.1039/d1ob02166d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of isoindolinones from N-methoxy benzamides and saturated ketones via a bimetallic tandem catalytic annulation has been accomplished. The reaction is catalyzed by a Rh/Cu-cocatalytic system and proceeds via the combination of Cu-catalyzed dehydrogenation of ketones and Rh-catalyzed direct C-H functionalization with the assistance of the N-methoxy amide group which also acts as an oxidant to regenerate the Rh catalyst. This method shows good compatibility with a wide range of substrates and functional groups, and provides an alternative strategy to obtain diverse isoindolinones.
Collapse
Affiliation(s)
- Xiao Du
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Yuntao Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Darun Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Decai Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Wendi Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Hailong Wu
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| |
Collapse
|
6
|
Ma T, Hua J, Bian M, Qin H, Lin X, Yang X, Liu C, Yang Z, Fang Z, Guo K. Visible light-promoted aerobic oxidative cleavage and cyclization of olefins to access 3-hydroxy-isoindolinones. Org Chem Front 2022. [DOI: 10.1039/d1qo01087e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environmentally friendly synthetic approach is described from 2-vinylbenzamide to 3-hydroxy-isoindolinones through visible light-promoted transformations via iron/disulfide catalysis and molecular oxygen oxidation.
Collapse
Affiliation(s)
- Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu industrial technology research institute, Nanjing 210031, P.R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210003, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
7
|
Begam HM, Nandi S, Jana R. Directing group switch in copper-catalyzed electrophilic C–H amination/migratory annulation cascade: divergent access to benzimidazolone/benzimidazole. Chem Sci 2022; 13:5726-5733. [PMID: 35694354 PMCID: PMC9116329 DOI: 10.1039/d2sc01420c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
We present here a copper-catalyzed electrophilic ortho C–H amination of protected naphthylamines with N-(benzoyloxy)amines, cyclization with the pendant amide, and carbon to nitrogen 1,2-directing group migration cascade to access N,N-disubstituted 2-benzimidazolinones. Remarkably, this highly atom-economic tandem reaction proceeds through a C–H and C–C bond cleavage and three new C–N bond formations in a single operation. Intriguingly, the reaction cascade was altered by the subtle tuning of the directing group from picolinamide to thiopicolinamide furnishing 2-heteroaryl-imidazoles via the extrusion of hydrogen sulfide. This strategy provided a series of benzimidazolones and benzimidazoles in moderate to high yields with low catalyst loading (66 substrates with yields up to 99%). From the control experiments, it was observed that after the C–H amination an incipient tetrahedral oxyanion or thiolate intermediate is formed via an intramolecular attack of the primary amine to the amide/thioamide carbonyl. It undergoes either a 1,2-pyridyl shift with the retention of the carbonyl moiety or H2S elimination for scaffold diversification. Remarkably, inspite of a positive influence of copper in the reaction outcome, from our preliminary investigations, the benzimidazolone product was obtained in good to moderate yields in two steps under metal-free conditions. The N-pyridyl moiety of the benzimidazolone was removed for further manipulation of the free NH group. A novel directing group switch strategy is explored in a copper-catalyzed divergent synthesis of benzimidazolone via electrophilic C–H amination/cyclization/1,2-C → N directing group migration cascade and benzimidazole through the extrusion of H2S.![]()
Collapse
Affiliation(s)
- Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata-700032 West Bengal India
| | - Shantanu Nandi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata-700032 West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata-700032 West Bengal India
| |
Collapse
|
8
|
Zhan ZZ, He JP, Jiang PB, Zhang MM, Wang HS, Luo N, Huang GS. Cu(II)‐Catalyzed Synthesis of 2,3,6‐Trisubstituted Pyridines from Saturated Ketone and Alkynones/1,3‐Dicarbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Jian P. He
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Peng B. Jiang
- Zhe Jiang Shaoxing Zhejiang Pharmaceutical Co., Ltd. No. 58 Changhe Road, Binhai New City Shaoxing City Zhejiang Province China
| | - Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
9
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
10
|
Fitzgerald LS, O'Duill ML. A Guide to Directing Group Removal: 8-Aminoquinoline. Chemistry 2021; 27:8411-8436. [PMID: 33559933 DOI: 10.1002/chem.202100093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/08/2021] [Indexed: 12/23/2022]
Abstract
The use of directing groups allows high levels of selectivity to be achieved in transition metal-catalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulis' 8-aminoquinoline (2005-2020), one of the most widely used N,N-bidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive end-users' guide for chemists in academia and industry who want to harness the synthetic power of directing groups-and be able to remove them from their final products.
Collapse
Affiliation(s)
- Liam S Fitzgerald
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
Chen J, Yin C, Zhou J, Yu C. Cobalt(II)‐Catalyzed C−H/N−H Functionalization and Annulation of
N
‐(quinolin‐8‐yl)benzamide with Cyclopropanols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinkang Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Institution Zhejiang University of Technology Hangzhou P.R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Jian Zhou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Institution Zhejiang University of Technology Hangzhou P.R. China
| |
Collapse
|
12
|
Borja-Miranda A, Valencia-Villegas F, Lujan-Montelongo JA, Polindara-García LA. Synthesis of Polysubstituted Isoindolinones via Radical Cyclization of 1,3-Dicarbonyl Ugi-4CR Adducts Using Tetrabutylammonium Persulfate and TEMPO. J Org Chem 2021; 86:929-946. [PMID: 33291875 DOI: 10.1021/acs.joc.0c02441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of an efficient method for the synthesis of polysubstituted isoindolinones from 1,3-dicarbonyl Ugi-4CR adducts, employing an aromatic radical cyclization process promoted by tetrabutylammonium persulfate and 2,2,6,6-tetramethyl-1-piperidine 1-oxyl (TEMPO), is described. The protocol allowed the construction of a library of isoindolinones bearing a congested carbon in good to excellent yields under mild conditions and in short reaction times.
Collapse
Affiliation(s)
- Andrés Borja-Miranda
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | - Fabiola Valencia-Villegas
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | | | - Luis A Polindara-García
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| |
Collapse
|
13
|
Abe M, Ueta K, Tanaka S, Kimachi T, Inamoto K. Palladium-catalyzed dehydrogenative C–H cyclization for isoindolinone synthesis. RSC Adv 2021; 11:26988-26991. [PMID: 35479970 PMCID: PMC9037686 DOI: 10.1039/d1ra04661f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this paper Pd-catalyzed intramolecular dehydrogenative C(sp3)–H amidation for the synthesis of isoindolinones is described. This method features the use of a Pd/C catalyst and the addition of a stoichiometric amount of oxidant is not necessary. A mechanistic study suggested the possible formation of H2 gas during the reaction. Pd-catalyzed intramolecular dehydrogenative C(sp3)–H amidation for the synthesis of isoindolinones was developed. Use of Pd/C as a catalyst enables the desired cyclization to proceed smoothly without adding any stoichiometric oxidants.![]()
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kaho Ueta
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Saki Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
14
|
Liang X, Xiong M, Zhu H, Shi K, Zhou Y, Pan Y. Copper/Palladium Bimetallic System for the Synthesis of Isobenzofuranones through [4 + 1] Annulation between Propiophenones and Benzoic Acids. Org Lett 2020; 22:9568-9573. [DOI: 10.1021/acs.orglett.0c03627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Keqiang Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yifeng Zhou
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
15
|
Wang R, Xu H, Li T, Zhang Y, Wang S, Chen G, Li C, Zhao H. Iridium/Copper‐Catalyzed Oxidative C−H/O−H Annulation of Benzoic Acids with Saturated Ketones for Accessing 3‐Substituted Phthalides. ChemCatChem 2020. [DOI: 10.1002/cctc.202001214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Hongyan Xu
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering University of Jinan Jinan Shandong 250022 P. R. China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
16
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
17
|
Kumar M, Verma S, Verma AK. Ru(II)-Catalyzed Oxidative Olefination of Benzamides: Switchable Aza-Michael and Aza-Wacker Reaction for Synthesis of Isoindolinones. Org Lett 2020; 22:4620-4626. [DOI: 10.1021/acs.orglett.0c01237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
18
|
Ling F, Song D, Chen L, Liu T, Yu M, Ma Y, Xiao L, Xu M, Zhong W. Syntheses of N-Alkyl 2-Arylindoles from Saturated Ketones and 2-Arylethynylanilines via Cu-Catalyzed Sequential Dehydrogenation/Aza-Michael Addition/Annulation Cascade. J Org Chem 2020; 85:3224-3233. [DOI: 10.1021/acs.joc.9b03091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dingguo Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linlin Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengyao Yu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Ma
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lian Xiao
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Min Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
19
|
Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. Chem Commun (Camb) 2020; 56:1393-1396. [PMID: 31912810 DOI: 10.1039/c9cc09076b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient C-H/N-H functionalization with allenes was enabled via versatile electro-oxidative cobalt catalysis. Thus, electrochemical C-H activations were accomplished with high levels of chemoselectivity and regioselectivity in an operationally simple undivided cell setup. The user-friendly nature of this protocol was highlighted by excellent functional group tolerance, an electro-reductive removable hydrazide directing group and easy scalability. Experimental mechanistic studies were indicative of a facile BIES C-H cobaltation event.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Liang He
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Junmei Sun
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Liang Zou
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Lutz Ackermann
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| |
Collapse
|