1
|
Xiao J, Jiang D, Wu X, Li J, Liu K, Huang B, Wang W. Carbene-induced ring-opening reactions of five-/six-membered cyclic ethers: expanding the frontiers of functional group introduction and molecular architecture construction. Org Biomol Chem 2025; 23:2024-2040. [PMID: 39840541 DOI: 10.1039/d4ob01923g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions. This review outlines the evolution of carbene-induced ring-opening reactions of cyclic ethers over the past two decades, focusing on the development of carbene precursors and the pathways of carbene formation. The insights provided are anticipated to inform and inspire the creation of new carbene sources and the advancement of oxonium intermediates, thereby contributing to the field's progress.
Collapse
Affiliation(s)
- Jun Xiao
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiujuan Wu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Juanhua Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Wei Wang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024; 124:12305-12380. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Neururer F, Huter K, Seidl M, Hohloch S. Reactivity and Structure of a Bis-phenolate Niobium NHC Complex. ACS ORGANIC & INORGANIC AU 2022; 3:59-71. [PMID: 36748079 PMCID: PMC9896488 DOI: 10.1021/acsorginorgau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We report the facile synthesis of a rare niobium(V) imido NHC complex with a dianionic OCO-pincer benzimidazolylidene ligand (L 1 ) with the general formula [NbL 1 (N t Bu)PyCl] 1-Py. We achieved this by in situ deprotonation of the corresponding azolium salt [H 3 L 1 ][Cl] and subsequent reaction with [Nb(N t Bu)Py 2 Cl 3 ]. The pyridine ligand in 1-Py can be removed by the addition of B(C6F5)3 as a strong Lewis acid leading to the formation of the pyridine-free complex 1. In contrast to similar vanadium(V) complexes, complex 1-Py was found to be a good precursor for various salt metathesis reactions, yielding a series of chalcogenido and pnictogenido complexes with the general formula [ NbL 1 (N t Bu)Py(EMes)] (E = O (2), S (3), NH (4), and PH (5)). Furthermore, complex 1-Py can be converted to alkyl complex (6) with 1 equiv of neosilyl lithium as a transmetallation agent. Addition of a second equivalent yields a new trianionic supporting ligand on the niobium center (7) in which the benzimidazolylidene ligand is alkylated at the former carbene carbon atom. The latter is an interesting chemically "noninnocent" feature of the benzimidazolylidene ligand potentially useful in catalysis and atom transfer reactions. Addition of mesityl lithium to 1-Py gives the pyridine-free aryl complex 8, which is stable toward "overarylation" by an additional equivalent of mesityl lithium. Electrochemical investigation revealed that complexes 1-Py and 1 are inert toward reduction in dichloromethane but show two irreversible reduction processes in tetrahydrofuran as a solvent. However, using standard reduction agents, e.g., KC8, K-mirror, and Na/Napht, no reduced products could be isolated. All complexes have been thoroughly studied by various techniques, including 1H-, 13C{1H}-, and 1H-15N HMBC NMR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
|
4
|
Shaw M, Bates M, Jones MD, Ward BD. Metallocene catalysts for the ring-opening co-polymerisation of epoxides and cyclic anhydrides. Polym Chem 2022. [DOI: 10.1039/d2py00335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring-opening co-polymerization (ROCOP) of epoxides and cyclic anhydrides is a versatile route to new polyesters. The vast number of monomers that are readily available means that an effectively limitless...
Collapse
|
5
|
Suresh L, Finnstad J, Törnroos KW, Le Roux E. Bis(phenolate)-functionalized N-heterocyclic carbene complexes of oxo- and imido-vanadium(V). Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
|
7
|
Liu X, Li J, Li N, Li B, Bu X. Recent Advances on Metal‐Organic Frameworks in the Conversion of Carbon Dioxide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Na Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry, Nankai University Tianjin 300350 China
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Romain C, Bellemin-Laponnaz S, Dagorne S. Recent progress on NHC-stabilized early transition metal (group 3–7) complexes: Synthesis and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Suresh L, Lalrempuia R, B. Ekeli J, Gillis-D’Hamers F, Törnroos KW, Jensen VR, Le Roux E. Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO 2. Molecules 2020; 25:E4364. [PMID: 32977466 PMCID: PMC7582562 DOI: 10.3390/molecules25194364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
Tridentate, bis-phenolate N-heterocyclic carbenes (NHCs) are among the ligands giving the most selective and active group 4-based catalysts for the copolymerization of cyclohexene oxide (CHO) with CO2. In particular, ligands based on imidazolidin-2-ylidene (saturated NHC) moieties have given catalysts which exclusively form polycarbonate in moderate-to-high yields even under low CO2 pressure and at low copolymerization temperatures. Here, to evaluate the influence of the NHC moiety on the molecular structure of the catalyst and its performance in copolymerization, we extend this chemistry by synthesizing and characterizing titanium complexes bearing tridentate bis-phenolate imidazol-2-ylidene (unsaturated NHC) and benzimidazol-2-ylidene (benzannulated NHC) ligands. The electronic properties of the ligands and the nature of their bonds to titanium are studied using density functional theory (DFT) and natural bond orbital (NBO) analysis. The metal-NHC bond distances and bond strengths are governed by ligand-to-metal σ- and π-donation, whereas back-donation directly from the metal to the NHC ligand seems to be less important. The NHC π-acceptor orbitals are still involved in bonding, as they interact with THF and isopropoxide oxygen lone-pair donor orbitals. The new complexes are, when combined with [PPN]Cl co-catalyst, selective in polycarbonate formation. The highest activity, albeit lower than that of the previously reported Ti catalysts based on saturated NHC, was obtained with the benzannulated NHC-Ti catalyst. Attempts to synthesize unsaturated and benzannulated NHC analogues based on Hf invariably led, as in earlier work with Zr, to a mixture of products that include zwitterionic and homoleptic complexes. However, the benzannulated NHC-Hf complexes were obtained as the major products, allowing for isolation. Although these complexes selectively form polycarbonate, their catalytic performance is inferior to that of analogues based on saturated NHC.
Collapse
Affiliation(s)
- Lakshmi Suresh
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Ralte Lalrempuia
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Jonas B. Ekeli
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Francis Gillis-D’Hamers
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| |
Collapse
|
10
|
Meshcheryakova IN, Arsenyeva KV, Fukin GK, Cherkasov VK, Piskunov AV. Stable N-heterocyclic carbene derivatives of copper(i) and silver(i) containing radical anion redox active ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Raman SK, Deacy AC, Pena Carrodeguas L, Reis NV, Kerr RWF, Phanopoulos A, Morton S, Davidson MG, Williams CK. Ti(IV)-Tris(phenolate) Catalyst Systems for the Ring-Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Organometallics 2020; 39:1619-1627. [PMID: 32421072 PMCID: PMC7218927 DOI: 10.1021/acs.organomet.9b00845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/05/2023]
Abstract
![]()
Titanium(IV)
complexes of amino-tris(phenolate) ligands (LTiX,
X = chloride, isopropoxide) together with bis(triphenylphosphine)iminium
chloride (PPNCl) are active catalyst systems for the ring-opening
copolymerization of carbon dioxide and cyclohexene oxide. They show
moderate activity, with turnover frequency values of ∼60 h–1 (0.02 mol % of catalyst, 80 °C, 40 bar of CO2) and high selectivity (carbonate linkages >90%), but their
absolute performances are lower than those of the most active Ti(IV)
catalyst systems. The reactions proceed with linear evolution of polycarbonate
(PCHC) molar mass with epoxide conversion, consistent with controlled
polymerizations, and evolve bimodal molar mass distributions of PCHC
(up to Mn = 42 kg mol–1). The stoichiometric reaction between [LTiOiPr] and tetraphenylphosphonium chloride, PPh4Cl,
allows isolation of the putative catalytic intermediate [LTi(OiPr)Cl]−, which is characterized
using single-crystal X-ray diffraction techniques. The anionic titanium
complex [LTi(OR)Cl]− is proposed as a model for
the propagating alkoxide intermediates in the catalytic cycle.
Collapse
Affiliation(s)
- Sumesh K Raman
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Leticia Pena Carrodeguas
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Natalia V Reis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ryan W F Kerr
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas Phanopoulos
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sebastian Morton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthew G Davidson
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
Mandal M. Group 4 complexes as catalysts for the transformation of CO2 into polycarbonates and cyclic carbonates. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|