1
|
Bhattacharyya S, Maji TK. Multi-dimensional metal-organic frameworks based on mixed linkers: Interplay between structural flexibility and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Kang T, Kim H, Jeoung S, Moon D, Moon HR, Lee D. Non-stackable molecules assemble into porous crystals displaying concerted cavity-changing motions. Chem Sci 2021; 12:6378-6384. [PMID: 34084437 PMCID: PMC8115244 DOI: 10.1039/d1sc01163d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
With small molecules, it is not easy to create large void spaces. Flat aromatics stack tightly, while flexible chains fold to fill the cavities. As an intuitive design to make open channels inside molecularly constructed solids, we employed propeller-shaped bicyclic triazoles to prepare a series of aromatic-rich three-dimensional (3D) building blocks. This modular approach has no previous example, but is readily applicable to build linear, bent, and branched arrays of non-stackable architectural motifs from existing flat aromatics by single-pot reactions. A letter H-shaped molecule thus prepared self-assembles into porous crystals, the highly unusual stepwise gas sorption behaviour of which prompted in-depth studies. A combination of single-crystal and powder X-ray diffraction analysis revealed multiple polymorphs, and sterically allowed pathways for their reversible interconversions that open and close the pores in response to external stimuli. Like non-collapsible open voids within stacks of steel H-beams, a non-covalent assembly of three-dimensional aromatics produces porous crystals. Concerted motions of the molecular H-beams open and close the cavities in response to external stimuli.![]()
Collapse
Affiliation(s)
- Taewon Kang
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Hongsik Kim
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| | - Sungeun Jeoung
- Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Eonyang-eup, Ulji-gun Ulsan 44919 Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory 80 Jigokro-127-beongil, Nam-gu Pohang 37673 Korea
| | - Hoi Ri Moon
- Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Eonyang-eup, Ulji-gun Ulsan 44919 Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
3
|
Wang P, Otake K, Hosono N, Kitagawa S. Crystal Flexibility Design through Local and Global Motility Cooperation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
4
|
Seth S, Jhulki S. Porous flexible frameworks: origins of flexibility and applications. MATERIALS HORIZONS 2021; 8:700-727. [PMID: 34821313 DOI: 10.1039/d0mh01710h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous crystalline frameworks including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have attracted great research interest in recent years. In addition to their assembly in the solid-state being fundamentally interesting and aesthetically pleasing, their potential applications have now pervaded in different areas of chemistry, biology and materials science. When framework materials are endowed with 'flexibility', they exhibit some properties (e.g., stimuli-induced pore breathing and reversible phase transformations) that are distinct from their rigid counterparts. Benefiting from flexibility and porosity, these framework materials have shown promise in applications that include separation of toxic chemicals, isotopes and hydrocarbons, sensing, and targeted delivery of chemicals. While flexibility in MOFs has been widely appreciated, recent developments of COFs and HOFs have established that flexibility is not just limited to MOFs. In fact, zeolites-that are considered rigid when compared with MOFs-are also known to exhibit dynamic modes. Despite flexibility may be conceived as being detrimental to the formation and stability of periodic structures, the landscape of flexible framework structures continues to expand with discovery of new materials with promising applications. In this review, we make an account of different flexible framework materials based on their framework types with a more focus on recent examples and delve into the origin of flexibility in each case. This systematic analysis of different flexibility types based on their origins enables understanding of structure-property relationships, which should help guide future development of flexible framework materials based on appropriate monomer design and tailoring their properties by bottom-up approach. In essence, this review provides a summary of different flexibility types extant to framework materials and critical analysis of importance of flexibility in emerging applications.
Collapse
Affiliation(s)
- Saona Seth
- Department of Applied Sciences, Tezpur University, Napaam, Assam 784028, India.
| | | |
Collapse
|
5
|
Wang P, Otake K, Hosono N, Kitagawa S. Crystal Flexibility Design through Local and Global Motility Cooperation. Angew Chem Int Ed Engl 2021; 60:7030-7035. [DOI: 10.1002/anie.202015257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
6
|
Kwak CH, Chang M. Crystal structure of [3,10-bis-(4-fluoro-pheneth-yl)-1,3,5,8,10,12-hexa-aza-cyclo-tetra-deca-ne]nickel(II) diperchlorate. Acta Crystallogr E Crystallogr Commun 2021; 77:148-152. [PMID: 33614144 PMCID: PMC7869553 DOI: 10.1107/s2056989020016795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022]
Abstract
The square-planar nickel(II) title complex, [Ni(C24H36F2N6)](ClO4)2 or [NiL](ClO4)2 (L = 3,10-bis-(4-fluoro-pheneth-yl)-1,3,5,8,10,12-hexa-aza-cyclo-tetra-deca-ne) was synthesized by a one-pot reaction of template condensation and its X-ray crystal structure was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-mol-ecule disorder. Ligand L, a hexa-aza-cyclo-tetra-decane ring having 4-fluoro-phenethyl side chains attached to uncoordinated nitro-gen atoms, adopts a trans III (R,R,S,S) configuration. The average Ni-N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C-N bond distance and C-N-C angle involving uncoordinated nitro-gen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of sp 2 hybridization for these N atoms. The inter-molecular N-H⋯O, C-H⋯O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.
Collapse
Affiliation(s)
- Chee-Hun Kwak
- Department of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea
| | - Mee Chang
- Polymerization Manufacturing Technology Research Team, Lotte Chemicals, 334-27 Yeosu Sandan-ro, Yeosu, 59616, South Korea
| |
Collapse
|
7
|
Krause S, Hosono N, Kitagawa S. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angew Chem Int Ed Engl 2020; 59:15325-15341. [DOI: 10.1002/anie.202004535] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Krause
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University, Ushinomiya, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
8
|
Krause S, Hosono N, Kitagawa S. Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004535] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Simon Krause
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University, Ushinomiya, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
9
|
Shin JW, Jeong AR, Kim Y, Kim DW, Lee SG, Lee H, Moon D. Solvent-triggered single-crystal-to-single-crystal transformation from a monomeric to polymeric copper(II) complex based on an aza macrocyclic ligand. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:225-232. [PMID: 32831224 DOI: 10.1107/s2052520620002371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 05/12/2023]
Abstract
Reversible solvent-triggered single-crystal-to-single-crystal (SCSC) transformations are observed between two copper(II) azamacrocyclic complexes: [Cu(C16H38N6)(H2O)2](C12H6O4) (1) and [Cu(C16H38N6)(C12H6O4)] (2). Complex (1) was prepared via self-assembly of a copper(II) azamacrocyclic complex containing butyl pendant groups, [Cu(C16H38N6)(ClO4)2], with 2,7-naphthalenedicarboxylic acid. When monomeric compound (1) was immersed in CH3OH, coordination polymer (2) was obtained, indicating a solvent-triggered SCSC transformation. Furthermore, when (2) was immersed in water, an reverse SCSC transformation from (2) to (1) occurred. Complex (1) presents a 3D supramolecular structure formed via intermolecular hydrogen-bonding interactions, whereas complex (2) features a 1D zigzag coordination polymer. The reversible SCSC transformation of (1) and (2) was characterized using single-crystal X-ray diffraction and in situ powder X-ray diffraction techniques. Despite its poor porosity, complex (2) displayed interesting CO2 adsorption behaviour under CO2 gas.
Collapse
Affiliation(s)
- Jong Won Shin
- Daegu Gyungbuk Branch, Korea Institute of Science and Technology Information, 10 Excoro, Bukgu, Daegu 41515, Republic of Korea
| | - Ah Rim Jeong
- Daegu Center, Korea Basic Science Institute, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Younghak Kim
- Pohang Accelerator Laboratory/POSTECH, 80 Jigokoro-127-beongil, Namgu, Pohang 37673, Republic of Korea
| | - Dae Woong Kim
- Beamline Department, Pohang Accelerator Laboratory/POSTECH, 80 Jigokoro-127-beongil, Namgu, Pohang 37673, Republic of Korea
| | - Sang Geul Lee
- Daegu Center, Korea Basic Science Institute, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Hyosun Lee
- Chemistry and Green-Nano Materials Research Centre, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory/POSTECH, 80 Jigokoro-127-beongil, Namgu, Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Hazra A, van Heerden DP, Sanyal S, Lama P, Esterhuysen C, Barbour LJ. CO 2-induced single-crystal to single-crystal transformations of an interpenetrated flexible MOF explained by in situ crystallographic analysis and molecular modeling. Chem Sci 2019; 10:10018-10024. [PMID: 32015814 PMCID: PMC6977545 DOI: 10.1039/c9sc04043a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
A molecular-level investigation is reported on breathing behaviour of a metal-organic framework (1) in response to CO2 gas pressure. High-pressure gas adsorption shows a pronounced step corresponding to a gate-opening phase transformation from a closed (1cp ) to a large-pore (1lp ) form. A plateau is observed upon desorption corresponding to narrow-pore intermediate form 1np which does not occur during adsorption. These events are corroborated by pressure-gradient differential scanning calorimetry and in situ single-crystal X-ray diffraction analysis under controlled CO2 gas pressure. Complete crystallographic characterisation facilitated a rationalisation of each phase transformation in the series 1cp → 1lp → 1np → 1cp during adsorption and subsequent desorption. Metropolis grand-canonical Monte Carlo simulations and DFT-PBE-D3 interaction energy calculations strongly underpin this first detailed structural investigation of an intermediate phase encountered upon desorption.
Collapse
Affiliation(s)
- Arpan Hazra
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Dewald P van Heerden
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Somananda Sanyal
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Prem Lama
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Catharine Esterhuysen
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science , University of Stellenbosch , Matieland , 7600 , South Africa .
| |
Collapse
|
11
|
Kang DW, Kang M, Kim H, Choe JH, Kim DW, Park JR, Lee WR, Moon D, Hong CS. A Hydrogen-Bonded Organic Framework (HOF) with Type IV NH 3 Adsorption Behavior. Angew Chem Int Ed Engl 2019; 58:16152-16155. [PMID: 31502347 DOI: 10.1002/anie.201911087] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 12/21/2022]
Abstract
An S-shaped gas isotherm pattern displays high working capacity in pressure-swing adsorption cycle, as established for CO2 , CH4 , acetylene, and CO. However, to our knowledge, this type of adsorption behavior has not been revealed for NH3 gas. Herein, we design and characterize a hydrogen-bonded organic framework (HOF) that can adsorb NH3 uniquely in an S-shape (type IV) fashion. While conventional porous materials, mostly with type I NH3 adsorption behavior, require relatively high regeneration temperature, this platform which has significant working capacity is easily regenerated and recyclable at room temperature.
Collapse
Affiliation(s)
- Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Won Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jeoung Ryul Park
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Woo Ram Lee
- Department of Chemistry, Sejong University, Seoul, 05006, Republic of Korea
| | - Dohyun Moon
- Beamline Division, Pohang Accelerator Laboratory (PAL), Kyungbuk, 37673, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Kang DW, Kang M, Kim H, Choe JH, Kim DW, Park JR, Lee WR, Moon D, Hong CS. A Hydrogen‐Bonded Organic Framework (HOF) with Type IV NH
3
Adsorption Behavior. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Won Kang
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Minjung Kang
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Hyojin Kim
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Jong Hyeak Choe
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Dae Won Kim
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Jeoung Ryul Park
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Woo Ram Lee
- Department of ChemistrySejong University Seoul 05006 Republic of Korea
| | - Dohyun Moon
- Beamline DivisionPohang Accelerator Laboratory (PAL) Kyungbuk 37673 Republic of Korea
| | - Chang Seop Hong
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| |
Collapse
|