1
|
Peng W, Yue Y, Zhang Y, Li H, Zhang C, Wang P, Cao Y, Liu X, Dong S, Wu M, Yao C. Scheduled dosage regimen by irreversible electroporation of loaded erythrocytes for cancer treatment. APL Bioeng 2023; 7:046102. [PMID: 37854061 PMCID: PMC10581719 DOI: 10.1063/5.0174353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Precise control of cargo release is essential but still a great challenge for any drug delivery system. Irreversible electroporation (IRE), utilizing short high-voltage pulsed electric fields to destabilize the biological membrane, has been recently approved as a non-thermal technique for tumor ablation without destroying the integrity of adjacent collagenous structures. Due to the electro-permeating membrane ability, IRE might also have great potential to realize the controlled drug release in response to various input IRE parameters, which were tested in a red blood cell (RBC) model in this work. According to the mathematical simulation model of a round biconcave disc-like cell based on RBC shape and dielectric characteristics, the permeability and the pore density of the RBC membrane were found to quantitatively depend on the pulse parameters. To further provide solid experimental evidence, indocyanine green (ICG) and doxorubicin (DOX) were both loaded inside RBCs (RBC@DOX&ICG) and the drug release rates were found to be tailorable by microsecond pulsed electric field (μsPEF). In addition, μsPEF could effectively modulate the tumor stroma to augment therapy efficacy by increasing micro-vessel density and permeability, softening extracellular matrix, and alleviating tumor hypoxia. Benefiting from these advantages, this IRE-responsive RBC@DOX&ICG achieved a remarkably synergistic anti-cancer effect by the combination of μsPEF and chemotherapy in the tumor-bearing mice model, with the survival time increasing above 90 days without tumor burden. Given that IRE is easily adaptable to different plasma membrane-based vehicles for delivering diverse drugs, this approach could offer a general applicability for cancer treatment.
Collapse
Affiliation(s)
- Wencheng Peng
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yaqi Yue
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | | | | | | | | | | | - Shoulong Dong
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ming Wu
- Authors to whom correspondence should be addressed: and
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
2
|
Parimi DS, Gupta Y, Marpu S, Bhatt CS, Bollu TK, Suresh AK. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics: Underlying risks and the emergence of ultrasmall nanomagnets. J Pharm Anal 2021; 12:365-379. [PMID: 35811618 PMCID: PMC9257447 DOI: 10.1016/j.jpha.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic potential of a nanovector for identification, monitoring, targeting, and post-treatment response analysis. Nanovectors of superparamagnetic iron oxide nanoparticles (SPION) are of tremendous significance in cancer therapy because of their inherited high surface area, high reactivity, biocompatibility, superior contrast, and magnetic and photo-inducibility properties. In addition to a brief introduction, we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches. Post-synthesis particulate and surface alterations in terms of pharmaco-affinity, liquid accessibility, and biocompatibility to facilitate cancer therapy are highlighted. SPION parameters including particle contrast, core-fusions, surface area, reactivity, photosensitivity, photodynamics, and photothermal properties, which facilitate diverse cancer diagnostics, are discussed. We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors, cell sorting, purification of bioentities, and elimination of toxins. Finally, while addressing the toxicity of nanomaterials, the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular interactions is reviewed. In summary, these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics. SPION synthesis with ascribed prominence on sustainable procedures. Particulate species, composition, and surface alteration-enabled theragnostics are highlighted. Inherent properties of SPIONs facilitating cancer diagnostics are elaborated. Magnetism-based “chemotherapeutics,” cell-sorting, and bioentity purification are emphasized. Emergence of ultrasmall SPIONs as a healthier option is summarized.
Collapse
|
3
|
Liu CM, Chen GB, Lin LH, Zhang JB, Guo SM, Sheng MX. Mesoporous silica nanoparticles with surface transformation ability for prostate cancer treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
5
|
Lin K, Cao Y, Zheng D, Li Q, Liu H, Yu P, Li J, Xue Y, Wu M. Facile phase transfer of hydrophobic Fe 3O 4@Cu 2-xS nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window. J Mater Chem B 2020; 8:1202-1211. [PMID: 31942915 DOI: 10.1039/c9tb02766a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of nanotheranostic agents integrating diagnosis and therapy has gained tremendous attention in the past few decades, but many of them are inherently hydrophobic and need complicated phase-transfer and tedious surface modifications. This work proposed a facile method of transferring hydrophobic Fe3O4@Cu2-xS nanoparticles from oil to water by using red blood cell membrane to create theranostic nanobeads for T2-weighted MRI and second near-infrared photothermal ablation. The obtained nanoplatform, namely SCS@RBCM, showed a core-shell structure with the inner core densely packed with Fe3O4@Cu2-xS nanoclusters and the surface coated with a layer of RBCM. SCS@RBCM displayed a stable nanostructure, high NIR II light absorption and photothermal conversion ability, T2-weighted MR imaging and magnetic field targeting ability. Meanwhile, the RBCM cloaking endowed SCS with reduced elimination by macrophages. With the navigation of an external magnetic field (MF), the tumor accumulation of SCS@RBCM was dramatically increased, thus achieving good performance of MR imaging and antitumor efficacy through the PTT effect under NIR II irradiation. Therefore, our strategy presents a new and desirable paradigm in the phase-transfer of hydrophobic nanotheranostics for optimizing their biomedical performance.
Collapse
Affiliation(s)
- Kecan Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350025, P. R. China. and The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yanbing Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Dongye Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Qin Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Hui Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Peiwen Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ming Wu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350025, P. R. China. and The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|