1
|
Jana S, Parthiban A, Rusli W. Polymer material innovations for a green hydrogen economy. Chem Commun (Camb) 2025; 61:3233-3249. [PMID: 39847386 DOI: 10.1039/d4cc05750c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy. Polymer-based composite tanks provide lightweight, high-strength on-board storage options for vehicles, enhancing safety and reducing costs. Polymeric proton exchange membranes in fuel cells efficiently convert hydrogen into electricity. Polymers also support hydrogen infrastructure with corrosion-resistant, durable pipelines, distribution ports and as hydrogen sensors. Additionally, porous and reversible hydrogenated-to-dehydrogenated forms of polymers show promise for material-based storage systems. This review highlights the role of polymer materials, their current advancements supporting a green hydrogen economy as a solution for a low-carbon future and future research directions.
Collapse
Affiliation(s)
- Satyasankar Jana
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Anbanandam Parthiban
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Wendy Rusli
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| |
Collapse
|
2
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
3
|
Liang Z, Liang H. Synthesis of Nano-Structured Conjugated Polymers with Multiple Micro-/Meso-Pores by the Post-Crosslinking of End-Functionalized Hyperbranched Conjugated Polymers. Polymers (Basel) 2024; 16:1192. [PMID: 38732661 PMCID: PMC11085608 DOI: 10.3390/polym16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
A nano-structured conjugated polymer with multiple micro-/meso-pores was synthesized by post-crosslinking of an end-functionalized hyperbranched conjugated prepolymer. Firstly, an AB2 monomer 3-((3,5-dibromo-4-(octyloxy)phenyl)ethynyl)-6-ethynyl-9-octyl-9H-carbazole (PECz) was synthesized and polymerized by Sonogashira reaction to give the -Br end-functionalized hyperbranched conjugated prepolymer hb-PPECz. The photophysical and electrochemical properties of hb-PPECz were investigated. The λmax of absorption and emission of hb-PPECz in tetrahydrofuran (THF) solution was 313 and 483 nm, respectively. The optical energy bandgap, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energy levels of hb-PPECz were 2.98, -5.81, and -2.83 eV, respectively. Then, the prepolymer hb-PPECz was post-crosslinked by Heck reaction with divinylbenzene to give the porous conjugated polymer c-PPECz. The effects of hb-PPECz concentration and added dispersant polyvinylpyrrolidone (PVP K-30) on the morphology and porosity of c-PPECz were investigated. The resulting c-PPECzs showed multiple porous structures mainly constructed by micropores and mesopores. Under a higher hb-PPECz concentration (4 wt/v%), a bulky gel product was obtained. Under lower hb-PPECz concentrations (0.6 wt/v%~2 wt/v%), the resulting c-PPECzs were mainly composed of nano-sized particles. Nearly spheric nanoparticles (200~300 nm) (c-PPECz-5) were obtained under the concentration of 1 wt/v% in the presence of PVP (10 wt% of hb-PPECz). The Brunauer-Emmett-Teller (BET) surface area, pore volume, average pore size, and percentage of pore size below 10 nm of c-PPECz-5 were 10.7781 m2·g-1, 0.0108 cm3·g-1, 4.0081 nm, and 94.47%, respectively.
Collapse
Affiliation(s)
| | - Hui Liang
- Key Laboratory of Designed Synthesis and Application of Polymer Materials (DSAPM Lab), Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education (PCFM Lab), School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
4
|
Zhang Z, Hu X, Qiu S, Su J, Bai R, Zhang J, Tian W. Boron-Nitrogen-Embedded Polycyclic Aromatic Hydrocarbon-Based Controllable Hierarchical Self-Assemblies through Synergistic Cation-π and C-H···π Interactions for Bifunctional Photo- and Electro-Catalysis. J Am Chem Soc 2024. [PMID: 38602776 DOI: 10.1021/jacs.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Boron-Nitrogen-embedded polycyclic aromatic hydrocarbons (BN-PAHs) as novel π-conjugated systems have attracted immense attention owing to their superior optoelectronic properties. However, constructing long-range ordered supramolecular assemblies based on BN-PAHs remains conspicuously scarce, primarily attributed to the constraints arising from coordinating multiple noncovalent interactions and the intrinsic characteristics of BN-PAHs, which hinder precise control over delicate self-assembly processes. Herein, we achieve the successful formation of BN-PAH-based controllable hierarchical assemblies through synergistically leveraged cation-π and C-H···π interactions. By carefully adjusting the solvent conditions in two progressive assembly hierarchies, the one-dimensional (1D) supramolecular assemblies with "rigid yet flexible" assembled units are first formed by cation-π interactions, and then they can be gradually fused into two-dimensional (2D) structures under specific C-H···π interactions, thus realizing the precise control of the transformation process from BN-PAH-based 1D primary structures to 2D higher-order assemblies. The resulting 2D-BNSA, characterized by enhanced electrical conductivity and ordered 2D layered structure, provides anchoring and dispersion sites for loading two appropriate nanocatalysts, thus facilitating the efficient photocatalytic CO2 reduction (with a remarkable CH4 evolution rate of 938.7 μmol g-1 h-1) and electrocatalytic acetylene semihydrogenation (reaching a Faradaic efficiency for ethylene up to 98.5%).
Collapse
Affiliation(s)
- Zhelin Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao Hu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junlong Su
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rui Bai
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Wang S, Meng X, Luo H, Yao L, Song X, Liang Z. Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Górski K, Mech-Piskorz J, Pietraszkiewicz M. From truxenes to heterotruxenes: playing with heteroatoms and the symmetry of molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a result of the modification of truxene, we can change the electronic structure or create multidimensional materials. Thus, the use of truxenes is very wide.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
7
|
Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101374] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Zheng J, Wang CG, Zhou H, Ye E, Xu J, Li Z, Loh XJ. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. RESEARCH (WASHINGTON, D.C.) 2021; 2021:3750689. [PMID: 33623916 PMCID: PMC7877397 DOI: 10.34133/2021/3750689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen energy, with environment amicable, renewable, efficiency, and cost-effective advantages, is the future mainstream substitution of fossil-based fuel. However, the extremely low volumetric density gives rise to the main challenge in hydrogen storage, and therefore, exploring effective storage techniques is key hurdles that need to be crossed to accomplish the sustainable hydrogen economy. Hydrogen physically or chemically stored into nanomaterials in the solid-state is a desirable prospect for effective large-scale hydrogen storage, which has exhibited great potentials for applications in both reversible onboard storage and regenerable off-board storage applications. Its attractive points include safe, compact, light, reversibility, and efficiently produce sufficient pure hydrogen fuel under the mild condition. This review comprehensively gathers the state-of-art solid-state hydrogen storage technologies using nanostructured materials, involving nanoporous carbon materials, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, nanoporous organic polymers, and nanoscale hydrides. It describes significant advances achieved so far, and main barriers need to be surmounted to approach practical applications, as well as offers a perspective for sustainable energy research.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Chen-Gang Wang
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Hui Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Jianwei Xu
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| |
Collapse
|
9
|
Wu Z, Li D, Yan G, Wang H, Liu S, Yang J, Zhang G. Heat-resistant and shape-memory metallo-supramolecules with simultaneously switchable fluorescence behavior supported by tridentate N3 group. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Huang M, Yang L, Li X, Chang G. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation–π and electrostatic forces. Chem Commun (Camb) 2020; 56:1401-1404. [DOI: 10.1039/c9cc08699d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recyclable indole-based POP was successfully achieved, which was capable of visual colorimetric iodine capture in water via cation–π and electrostatic interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Xiuyun Li
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|