1
|
Mann DS, Thakur S, Sangale SS, Jeong K, Kwon S, Na S. Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405953. [PMID: 39301996 PMCID: PMC11618699 DOI: 10.1002/smll.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Indexed: 09/22/2024]
Abstract
The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.
Collapse
Affiliation(s)
- Dilpreet Singh Mann
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sakshi Thakur
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sushil S. Sangale
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Kwang‐Un Jeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sung‐Nam Kwon
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Seok‐In Na
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| |
Collapse
|
2
|
Gebremichael ZT, Alam S, Stumpf S, Diegel M, Schubert US, Hoppe H. Single‐step post‐production treatment of lead acetate precursor‐based perovskite using alkylamine salts for reduced grain‐boundary related film defects. NANO SELECT 2022. [DOI: 10.1002/nano.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zekarias Teklu Gebremichael
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- College of Natural and Computational Science Aksum University Aksum City Tigray 1010 Ethiopia
| | - Shahidul Alam
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal Kingdom of Saudi Arabia
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Jena Germany
| | - Marco Diegel
- Leibniz Institute of Photonics Technology Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Jena Germany
| | - Harald Hoppe
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
| |
Collapse
|
3
|
Mahapatra AD, Lee JW. Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm 2022. [DOI: 10.1039/d2ce00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the recent progress in metal oxide charge transporting layers to achieve stable high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Ayon Das Mahapatra
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Awol N, Amente C, Verma G, Kim JY. Morphology and surface analyses for CH 3NH 3PbI 3 perovskite thin films treated with versatile solvent-antisolvent vapors. RSC Adv 2021; 11:17789-17799. [PMID: 35480209 PMCID: PMC9033224 DOI: 10.1039/d1ra02645c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Organometal halide perovskite (CH3NH3PbI3) semiconductors have been promising candidates as a photoactive layer for photovoltaics. Especially for high performance devices, the crystal structure and morphology of this perovskite layer should be optimized. In this experiment, by employing solvent-antisolvent vapor techniques during a modified sequential deposition of PbI2-CH3NH3I layers, the morphology engineering was carried out as a function of antisolvent species such as: chloroform, chlorobenzene, dichlorobenzene, toluene, and diethyl ether. Then, the optical, morphological, structural, and surface properties were characterized. When dimethyl sulfoxide (DMSO, solvent) and diethyl ether (antisolvent) vapors were employed, the CH3NH3PbI3 layer exhibited relatively desirable crystal structures and morphologies, resulting in an optical bandgap (E g) of 1.61 eV, crystallite size (t) of 89.5 nm, and high photoluminescence (PL) intensity. Finally, the stability of perovskite films toward water was found to be dependent on the morphologies with defects such as grain boundaries, which was evaluated through contact angle measurement.
Collapse
Affiliation(s)
- Nasir Awol
- School of Materials Science and Engineering, Jimma Institute of Technology, Jimma University P. O. Box 378 Jimma Ethiopia
- Dr Shanti Swarup Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University Chandigarh 160014 India
| | - Chernet Amente
- Department of Physics, College of Computational and Natural Science, Addis Ababa University P. O. Box 1176 Addis Ababa Ethiopia
| | - Gaurav Verma
- Dr Shanti Swarup Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University Chandigarh 160014 India
- Centre for Nanoscience & Nanotechnology, University Institute for Emerging Areas in Science and Technology, Panjab University Chandigarh 160014 India
| | - Jung Yong Kim
- School of Materials Science and Engineering, Jimma Institute of Technology, Jimma University P. O. Box 378 Jimma Ethiopia
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University P. O. Box 378 Jimma Ethiopia
| |
Collapse
|
5
|
|
6
|
Azam M, Yue S, Xu R, Yang S, Liu K, Huang Y, Sun Y, Hassan A, Ren K, Tan F, Wang Z, Lei Y, Qu S, Wang Z. Realization of Moisture-Resistive Perovskite Films for Highly Efficient Solar Cells Using Molecule Incorporation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39063-39073. [PMID: 32805927 DOI: 10.1021/acsami.0c09046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of highly crystalline perovskite films with large crystal grains and few surface defects is attractive to obtain high-performance perovskite solar cells (PSCs) with good device stability. Herein, we simultaneously improve the power conversion efficiency (PCE) and humid stability of the CH3NH3PbI3 (CH3NH3 = MA) device by incorporating small organic molecule IT-4F into the perovskite film and using a buffer layer of PFN-Br. The presence of IT-4F in the perovskite film can successfully improve crystallinity and enhance the grain size, leading to reduced trap states and longer lifetime of the charge carrier, and make the perovskite film hydrophobic. Meanwhile, as a buffer layer, PFN-Br can accelerate the separation of excitons and promote the transfer process of electrons from the active layer to the cathode. As a consequence, the PSCs exhibit a remarkably improved PCE of 20.55% with reduced device hysteresis. Moreover, the moisture-resistive film-based devices retain about 80% of their initial efficiency after 30 days of storage in relative humidity of 10-30% without encapsulation.
Collapse
Affiliation(s)
- Muhammad Azam
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shizhong Yue
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Institut für Physik & IMN MacroNano@ (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Shuaijian Yang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Huang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Sun
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali Hassan
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kuankuan Ren
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, Department of Physics and Electronics, Henan University, Henan 475004, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Lei
- Institut für Physik & IMN MacroNano@ (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanguo Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Di Girolamo D, Di Giacomo F, Matteocci F, Marrani AG, Dini D, Abate A. Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chem Sci 2020; 11:7746-7759. [PMID: 34094149 PMCID: PMC8163100 DOI: 10.1039/d0sc02859b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022] Open
Abstract
The power conversion efficiency (PCE) of NiO based perovskite solar cells has recently hit a record 22.1% with a hybrid organic-inorganic perovskite composition and a PCE above 15% in a fully inorganic configuration was achieved. Moreover, NiO processing is a mature technology, with different industrially attractive processes demonstrated in the last few years. These considerations, along with the excellent stabilities reported, clearly point towards NiO as the most efficient inorganic hole selective layer for lead halide perovskite photovoltaics, which is the topic of this review. NiO optoelectronics is discussed by analysing the different doping mechanisms, with a focus on the case of alkaline and transition metal cation dopants. Doping allows tuning the conductivity and the energy levels of NiO, improving the overall performance and adapting the material to a variety of perovskite compositions. Furthermore, we summarise the main investigations on the NiO/perovskite interface stability. In fact, the surface of NiO is commonly oxidised and reactive with perovskite, also under the effect of light, thermal and electrical stress. Interface engineering strategies should be considered aiming at long term stability and the highest efficiency. Finally, we present the main achievements in flexible, fully printed and lead-free perovskite photovoltaics which employ NiO as a layer and provide our perspective to accelerate the improvement of these technologies. Overall, we show that adequately doped and passivated NiO might be an ideal hole selective layer in every possible application of perovskite solar cells.
Collapse
Affiliation(s)
- Diego Di Girolamo
- Department of Chemical, Materials and Production Engineering. University of Naples Federico II Pzz.le Vincenzo Tecchio 80 Naples 80125 Italy
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Francesco Di Giacomo
- C.H.O.S.E.- Center for Hybrid and Organic Solar Energy, Department of Electrical Engineering, University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Fabio Matteocci
- C.H.O.S.E.- Center for Hybrid and Organic Solar Energy, Department of Electrical Engineering, University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Andrea Giacomo Marrani
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Danilo Dini
- Department of Chemistry, University of Rome La Sapienza Pzz.le Aldo Moro 5 Rome 00185 Italy
| | - Antonio Abate
- Department of Chemical, Materials and Production Engineering. University of Naples Federico II Pzz.le Vincenzo Tecchio 80 Naples 80125 Italy
- Institute for Silicon Photovoltaics, Hemlholtz Zentrum Berlin Kekulestraße 5 D-12489 Berlin Germany
| |
Collapse
|
8
|
Kang JH, Song A, Park YJ, Seo JH, Walker B, Chung KB. Tungsten-Doped Zinc Oxide and Indium-Zinc Oxide Films as High-Performance Electron-Transport Layers in N-I-P Perovskite Solar Cells. Polymers (Basel) 2020; 12:polym12040737. [PMID: 32224859 PMCID: PMC7240459 DOI: 10.3390/polym12040737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Perovskite solar cells (PSCs) have attracted tremendous research attention due to their potential as a next-generation photovoltaic cell. Transition metal oxides in N–I–P structures have been widely used as electron-transporting materials but the need for a high-temperature sintering step is incompatible with flexible substrate materials and perovskite materials which cannot withstand elevated temperatures. In this work, novel metal oxides prepared by sputtering deposition were investigated as electron-transport layers in planar PSCs with the N–I–P structure. The incorporation of tungsten in the oxide layer led to a power conversion efficiency (PCE) increase from 8.23% to 16.05% due to the enhanced electron transfer and reduced back-recombination. Scanning electron microscope (SEM) images reveal that relatively large grain sizes in the perovskite phase with small grain boundaries were formed when the perovskite was deposited on tungsten-doped films. This study demonstrates that novel metal oxides can be used as in perovskite devices as electron transfer layers to improve the efficiency.
Collapse
Affiliation(s)
- Ju Hwan Kang
- Department of Materials Physics, Dong-A University, Busan 49315, Korea; (J.H.K.); (Y.J.P.)
| | - Aeran Song
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Korea;
| | - Yu Jung Park
- Department of Materials Physics, Dong-A University, Busan 49315, Korea; (J.H.K.); (Y.J.P.)
| | - Jung Hwa Seo
- Department of Materials Physics, Dong-A University, Busan 49315, Korea; (J.H.K.); (Y.J.P.)
- Correspondence: (J.H.S.); (B.W.); (K.-B.C.); Tel.: +82-51-200-7233 (J.H.S.)
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (J.H.S.); (B.W.); (K.-B.C.); Tel.: +82-51-200-7233 (J.H.S.)
| | - Kwun-Bum Chung
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Korea;
- Correspondence: (J.H.S.); (B.W.); (K.-B.C.); Tel.: +82-51-200-7233 (J.H.S.)
| |
Collapse
|
9
|
Efficiency Improvement of MAPbI3 Perovskite Solar Cells Based on a CsPbBr3 Quantum Dot/Au Nanoparticle Composite Plasmonic Light-Harvesting Layer. ENERGIES 2020. [DOI: 10.3390/en13061471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.
Collapse
|
10
|
Cathodic electrochemiluminescence performance of all-inorganic perovskite CsPbBr3 nanocrystals in an aqueous medium. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Liu Y, Duan J, Zhang J, Huang S, Ou-Yang W, Bao Q, Sun Z, Chen X. High Efficiency and Stability of Inverted Perovskite Solar Cells Using Phenethyl Ammonium Iodide-Modified Interface of NiO x and Perovskite Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:771-779. [PMID: 31854975 DOI: 10.1021/acsami.9b18217] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hole transport layer NiOx-based inverted perovskite solar cells (PSCs) have advantages of simple fabrication, low temperature, and low cost. Furthermore, the p-type NiOx material compared to that of typical n-type SnOx for PSCs has better photostability potential due to its lower photocatalytic ability. However, the NiOx layer modified by some typical materials show relatively simple functions, which limit the synthesized performance of NiOx-based inverted PSCs. Phenethyl ammonium iodide (PEAI) was introduced to modify the NiOx/perovskite interface, which can synchronously contribute to better crystallinity and stability of the perovskite layer, passivating interface defects, formed quasi-two-dimensional PEA2PbI4 perovskite layers, and superior interface contact properties. The PCEs of PSCs with the PEAI-modified NiOx/perovskite interface was obviously increased from 20.31 from 16.54% compared to that of the reference PSCs. The PSCs with PEAI modification remained 75 and 72% of the original PCE values aging for 10 h at 85 °C and 65 days in a relative humidity of 15%, which are superior to the original PCE values (47 and 51%, respectively) for the reference PSCs. Therefore, PSCs with the PEAI-modified NiOx/perovskite interface show higher PCEs and better thermal stability and moisture resistance.
Collapse
|