1
|
He Y, He TJ, Cheng X, Wei Y, Wang H, Lin YW. Phosphine-catalyzed dearomative [3+2] cycloaddition of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates. Chem Commun (Camb) 2024; 60:6961-6964. [PMID: 38887994 DOI: 10.1039/d4cc02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An efficient phosphine-catalyzed dearomative [3+2] annulation of 4-nitroisoxazoles with allenoates or Morita-Baylis-Hillman carbonates has been established for the convenient synthesis of bicyclic isoxazoline derivatives. This reaction approach showed a broad substrate scope, high functional group compatibility, and excellent regioselectivity and diastereoselectivity. Furthermore, the success at the gram-scale and synthetic applications of the obtained compound 3a demonstrate the great potential of this methodology for practical applications in organic synthesis.
Collapse
Affiliation(s)
- Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Xiufang Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, P. R. China.
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang, P. R. China
| |
Collapse
|
2
|
Ryckaert B, Hullaert J, Van Hecke K, Winne JM. Dithioallyl Cations in Stereoselective Dearomative (3 + 2) Cycloadditions of Benzofurans: Mechanism and Synthetic Applications. J Org Chem 2023; 88:14504-14514. [PMID: 37812456 DOI: 10.1021/acs.joc.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A stereoselective dearomative cyclopentannulation of benzofurans is reported. A previously reported dearomative (3 + 2) cycloaddition of indoles with 1,4-dithiane-fused allyl cations was found to lack stereoselectivity when more substituted cyclopentene rings are targeted. However, for benzofuran substrates, excellent levels of stereoselectivity were observed for the same allyl cation reagents under very similar reaction conditions. In this full account, we provide a mechanistic rationale and some design principles that govern the stereoselectivity of the intriguing dearomative transformations using dithioallyl cations and demonstrate how the stereoselectivity depends on electronic factors of the starting materials. The stereoselective methodology is also applied in a straightforward dearomative synthesis of the tricyclic sesquiterpenoid natural product aplysin and its analogues, starting from a simple benzofuran.
Collapse
Affiliation(s)
- Bram Ryckaert
- OS Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Jan Hullaert
- OS Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent B-9000, Belgium
| | - Johan M Winne
- OS Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| |
Collapse
|
3
|
Ren Y, Shi W, Tang Y, Piao S, Yu S, Wu Y, Guo H. Phosphine-Catalyzed (3 + 2) Annulation of γ-Substituted Cinnamic Aldehyde-Derived Morita-Baylis-Hillman Carbonates through Remote Activation. Org Lett 2023; 25:7374-7379. [PMID: 37782039 DOI: 10.1021/acs.orglett.3c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A series of γ-substituted Morita-Baylis-Hillman (MBH) carbonates were synthesized and subjected to phosphine-catalyzed annulations with electrophilic exocyclic alkenes, giving various valuable spirocyclopentenes in moderate to excellent yields with moderate to excellent diastereoselectivities. A large scope of MBH carbonates bearing γ-hydrogen, alkenyl, and alkynyl substituents was well tolerated. The annulation unprecedentedly involves β-, γ-, and δ-carbons of MBH carbonates.
Collapse
Affiliation(s)
- Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Shixiang Piao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Wei X, Huang Y, Karimi Z, Qu J, Wang B. DMAP-Catalyzed [4+3] Spiroannulation of Pyrazolone-Derived Morita-Baylis-Hillman Carbonates with N-( o-Chloromethyl)aryl Amides to Forge Spiro[pyrazolone-azepine] Scaffolds. J Org Chem 2023. [PMID: 37389982 DOI: 10.1021/acs.joc.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A novel DMAP-catalyzed [4+3] spiroannulation of pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(o-chloromethyl)aryl amides was developed. This reaction led to the assembly of medicinally relevant pyrazolone and azepine nuclei into a structurally new spirocyclic scaffold, and a diverse array of spiro[pyrazolone-azepine] products were afforded in good to excellent yields (up to 93%) with a wide substrate scope (23 examples) under mild conditions. Moreover, a gram-scale reaction and product transformations were conducted, which further increased the diversity of products.
Collapse
Affiliation(s)
- Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zahra Karimi
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
5
|
He XL, Wen YW, Li H, Qian S, He M, Song Q, Wang Z. Diastereoselective Synthesis of Dihydrobenzofuran-Fused Spiroindolizidines via Double-Dearomative [3 + 2] Cycloadditions. J Org Chem 2023; 88:493-503. [PMID: 36550408 DOI: 10.1021/acs.joc.2c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spiroindolizidine oxindoles represent a kind of privileged scaffold in many biologically active natural alkaloids. 2,3-Dihydrobenzofuran derivatives exhibit significant bioactivities in a variety of pharmaceuticals. Herein, we assembled these two privileged fragments into a small molecule via double-dearomative [3 + 2] cycloadditions with pyridinium ylides and 2-nitrobenzofurans. This protocol features remarkable advantages including wide substrate scope, mild condition, high level of diastereoselectivities and yields. Thus, a collection of spiroindolizidine-fused dihydrobenzofurans/indolines were facilely produced efficiently.
Collapse
Affiliation(s)
- Xiao-Long He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - You-Wu Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Hechen Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Shan Qian
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - Mengyang He
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Qiao Song
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Zhouyu Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| |
Collapse
|
6
|
Zhang QX, Gu Q, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org Lett 2022; 24:8031-8035. [PMID: 36264244 DOI: 10.1021/acs.orglett.2c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd-catalyzed intermolecular asymmetric allylic dearomatization of substituted β-naphthol derivatives with Boc-protected Morita-Baylis-Hillman (MBH) adducts was developed. The reaction occurs smoothly in 1,4-dioxane at room temperature in the presence of [Pd(C3H5)Cl]2 (2.5 mol %), (S, Sp)-PHOX ligand (5.5 mol %), and Li2CO3 (1.0 equiv). A series of dearomatized products were afforded in moderate to excellent yields and enantioselectivity (up to 99% yield, 97% ee). Furthermore, the compatibility with gram-scale reaction and mild conditions make the current method synthetically useful.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
7
|
Rao GA, Gurubrahamam R, Chen K. Base‐Catalysed [4+2]‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3,2‐b]Benzofuropyridinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gunda Ananda Rao
- National Taiwan Normal University - Gongguan Campus Department of Chemistry TAIWAN
| | - Ramani Gurubrahamam
- Indian Institute of Technology Jammu Department of Chemistry jagti, nagrota bypass road 181221 Jammu INDIA
| | - Kwunmin Chen
- National Taiwan Normal University - Gongguan Campus Department of Chemistry INDIA
| |
Collapse
|
8
|
Wang S, Gao Y, Song S, Li X, Zhang Z, Xiang J, Zheng L. Lewis base catalyzed allylation reaction of N-aryl amides with Morita–Baylis–Hillman carbonates. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022; 34:1019-1034. [PMID: 35521642 DOI: 10.1002/chir.23455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
A readily available chiral cyclohexanediamine-derived bifunctional tertiary amine-squaramide catalyst is more effective for the asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. A range of structurally diverse spiro-fused polyheterocyclic compounds containing oxindole, pyrrolidine, and hydrobenzofuran motifs were smoothly obtained in excellent results (up to 99% yield, >20:1 dr in all cases and up to 99% ee). This method features high efficiency, mild reaction conditions, exquisite asymmetric induction, wide functional group tolerance, great potential for scale-up synthesis, and attractive product diversification.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China.,Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Yue-Qin Lai
- Zhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Dyguda M, Skrzyńska A, Sieroń L, Albrecht Ł. Dearomative Michael addition involving enals and 2-nitrobenzofurans realized under NHC-catalysis. Chem Commun (Camb) 2022; 58:5367-5370. [PMID: 35352710 DOI: 10.1039/d2cc00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this manuscript, the first enantioselective dearomative Michael addition between α,β-unsaturated aldehydes and 2-nitrobenzofurans realized under N-heterocyclic carbene activation has been described. The reaction proceeds via addition of homoenolate to Michael acceptors leading to the formation of biologically important heterocycles with high yields and stereoselectivities. Their functionalization potential has been confirmed in selected, diastereoselective transformations.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Anna Skrzyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, 90-924, Poland.
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
11
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
12
|
Laviós A, Sanz-Marco A, Vila C, Muñoz MC, Pedro JR, Blay G. Metal-Free Diastereo- and Enantioselective Dearomative Formal [3 + 2] Cycloaddition of 2-Nitrobenzofurans and Isocyanoacetate Esters. Org Lett 2022; 24:2149-2154. [PMID: 35293212 PMCID: PMC8961877 DOI: 10.1021/acs.orglett.2c00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The diastereo- and enantioselective dearomative formal [3 + 2] cycloaddition of 2-nitrobenzofurans and α-aryl-α-isocyanoacetate esters provides tricyclic compounds bearing the 3a,8b-dihydro-1H-benzofuro[2,3-c]pyrrole framework with three consecutive stereogenic centers. The reaction was enabled by a cupreine-ether organocatalyst. The reaction products were obtained with almost full diastereoselectivity and with excellent enantiomeric excesses for a number of substituted 2-nitrobenzofurans and isocyanoacetates.
Collapse
Affiliation(s)
- Adrian Laviós
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Amparo Sanz-Marco
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament
de Física Aplicada, Universitat Politècnica
de València, Camí de Vera S/N, 46022 València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
13
|
Lu Z, Jia Y, Chen X, Li P. Organocatalytic Regio- and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita-Baylis-Hillman Carbonates with 3-Methyleneoxindoles. J Org Chem 2022; 87:3184-3194. [PMID: 35133821 DOI: 10.1021/acs.joc.1c02917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A type of Morita-Baylis-Hillman (MBH) carbonates has been developed from ninhydrin. These MBH carbonates have been successfully employed as 3C-synthons in the organocatalytic asymmetric [3 + 2]-annulations of the isatin-derived electron-deficient olefins, affording structurally diverse spirooxindoles in high yield with excellent stereoselectivity. In particular, the regioselectivity of MBH carbonates was controlled by the reaction partner, 3-methyleneoxindoles with carbonyl groups (R = ArCO), affording β-selective products and 3-methyleneoxindoles with ester groups (R = CO2Me) furnishing γ-selective products. The representative scale-up reactions and transformation of product were examined. The reaction mechanism was expounded by control experiments.
Collapse
Affiliation(s)
- Zhongyue Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanwen Jia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.,Key Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Yuan WC, Chen XM, Zhao JQ, Zhang YP, Wang ZH, You Y. Ag-Catalyzed Asymmetric Interrupted Barton-Zard Reaction Enabling the Enantioselective Dearomatization of 2- and 3-Nitroindoles. Org Lett 2022; 24:826-831. [PMID: 35029401 DOI: 10.1021/acs.orglett.1c04036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose a Ag-catalyzed asymmetric interrupted Barton-Zard reaction of α-aryl-substituted isocyanoacetates with 2- and 3-nitroindoles, which enables the dearomatization of nitroindoles and hence offers rapid access to an array of optically active tetrahydropyrrolo[3,4-b]indole derivatives bearing three contiguous stereogenic centers, including two tetrasubstituted chiral carbon atoms with pretty outcomes (up to 99% yield, 91:9 dr, and 96% ee). The synthetic potential of the protocol was showcased by the gram-scale reaction and versatile transformations of the product.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Gao C, Zhang T, Li X, Wu JD, Liu J. Asymmetric Decarboxylative [3+2] Cycloaddition for the Diastereo- and Enantioselective Synthesis of Spiro[2.4]heptanes via Cyclopropanation. Org Chem Front 2022. [DOI: 10.1039/d2qo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric cycloaddition reaction has emerged as one of the powful and reliable strategies for the construction of enantioenriched molecules, especially those with polycyclic frameworks. Herein, we report the asymmetric decarboxylative...
Collapse
|
16
|
Zhou P, Yi Y, Hua YZ, Jia SK, Wang MC. Dinuclear Zinc Catalyzed Enantioselective Dearomatization [3+2] Annulation of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes. Chemistry 2021; 28:e202103688. [PMID: 34713514 DOI: 10.1002/chem.202103688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
The application of dinuclear zinc catalysts in a dearomatization reaction has been developed. Catalytic asymmetric dearomatization [3+2] annulations of 2-nitrobenzofurans or 2-nitrobenzothiophenes with CF3 -containing N-unprotected isatin-derived azomethine ylides catalyzed by dinuclear zinc catalysts are realized with excellent diastereomer ratios (dr) of >20 : 1 and enantiomeric excess (ee) of up to 99 %. This protocol provides a practical, straightforward access to structurally diverse pyrrolidinyl spirooxindoles containing a 2,3-fused-dihydrobenzofuran (or dihydrobenzothiphene) moiety, and four contiguous stereocenters. Reactions can be performed on a gram scale. The absolute configuration of products is confirmed by X-ray single crystal structure analysis, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yang Yi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| |
Collapse
|
17
|
Wang DC, Cheng PP, Yang TT, Wu PP, Qu GR, Guo HM. Asymmetric Domino Heck/Dearomatization Reaction of β-Naphthols to Construct Indole-Terpenoid Frameworks. Org Lett 2021; 23:7865-7872. [PMID: 34582193 DOI: 10.1021/acs.orglett.1c02881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A palladium-catalyzed enantioselective Heck cyclization/dearomatization cascade via capturing the cyclized Heck π-allylpalladium intermediate by β-naphthols is reported, which provides a new strategy for the construction of chiral indole-terpenoid frameworks. This method affords indole-functionalized β-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center in excellent yields (up to 92%) and enantioselectivities (up to 94% ee). In addition, the utility of this method is showcased by the gram-scale syntheses and diverse transformations of the dearomatized products.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peng-Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting-Ting Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Wan Q, Xie JH, Zheng C, Yuan YF, You SL. Silver-Catalyzed Asymmetric Dearomatization of Electron-Deficient Heteroarenes via Interrupted Barton-Zard Reaction. Angew Chem Int Ed Engl 2021; 60:19730-19734. [PMID: 34196074 DOI: 10.1002/anie.202107767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Herein we report a catalytic asymmetric dearomatization reaction of electron-deficient heteroarenes with α-substituted isocyanoacetates through an interrupted Barton-Zard reaction. A range of optically active pyrrolo[3,4-b]indole derivatives was obtained in good yields (up to 97 %) with high stereoselectivities (up to >20:1 dr and 97 % ee), using a catalytic system consisting of a cinchona-derived amino-phosphine and silver oxide. This reaction features wide substrate scope and mild conditions, and provides a new strategy for developing asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yao-Feng Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
19
|
Saktura M, Skrzyńska A, Frankowski S, Wódka S, Albrecht Ł. Asymmetric Dearomative (3+2)-Cycloaddition Involving Nitro-Substituted Benzoheteroarenes under H-Bonding Catalysis. Molecules 2021; 26:molecules26164992. [PMID: 34443580 PMCID: PMC8401887 DOI: 10.3390/molecules26164992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
In our studies, the organocatalytic 1,3-dipolar cycloaddition between 2-nitrobenzofurans or 2-nitrobenzothiophene and N-2,2,2-trifluoroethyl-substituted isatin imines has been developed. The reaction has been realized by employing bifunctional organocatalysis, with the use of squaramide derivative being crucial for the stereochemical efficiency of the process. The usefulness of the cycloadducts obtained has been confirmed in selected transformations, including aromative and non-aromative removal of the nitro group.
Collapse
Affiliation(s)
| | - Anna Skrzyńska
- Correspondence: (A.S.); (Ł.A.); Tel.: +48-42-631-31-42 (ext. 23) (A.S.); +48-42-631-31-57 (Ł.A.)
| | | | | | - Łukasz Albrecht
- Correspondence: (A.S.); (Ł.A.); Tel.: +48-42-631-31-42 (ext. 23) (A.S.); +48-42-631-31-57 (Ł.A.)
| |
Collapse
|
20
|
Wan Q, Xie J, Zheng C, Yuan Y, You S. Silver‐Catalyzed Asymmetric Dearomatization of Electron‐Deficient Heteroarenes via Interrupted Barton–Zard Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao‐Feng Yuan
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
21
|
Dou P, Chen Y, You Y, Wang Z, Zhao J, Zhou M, Yuan W. Organocatalyzed Asymmetric Dearomative [3+2] Annulation of Electron‐Deficient 2‐Nitrobenzo Heteroarenes with 3‐Isothiocyanato Oxindoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei‐Hao Dou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yan Chen
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Zhen‐Hua Wang
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Jian‐Qiang Zhao
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Ming‐Qiang Zhou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
| | - Wei‐Cheng Yuan
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
22
|
Singh G, Pandey R, Kurup AS, Anand RV. A Base-Mediated Approach Towards Dihydrofuro[2,3-b]Benzofurans from 2-Nitrobenzofurans and 1,3-Dicarbonyls. Chem Asian J 2021; 16:1271-1279. [PMID: 33788982 DOI: 10.1002/asia.202100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Indexed: 11/08/2022]
Abstract
A straight-forward approach for the synthesis of a dihydrofuro[2,3-b]benzofuran derivatives has been achieved through a base-mediated Michael addition of 1,3-dicarbonyls to 2-nitrobenzofurans followed by intramolecular cyclization. A variety of 1,3-dicarbonyls, including cyclic as well as trifluoromethylated ones, have been subjected to react with 2-nitrobenzofurans under optimal conditions, and the respective dihydrofuro[2,3-b]benzofurans could be accessed in moderate to excellent yields.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Adarsh S Kurup
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| |
Collapse
|
23
|
Jiang Z, Liu X, Zhang H, Tan J, Ren X, Gao G, Wang T. Bifunctinoal Phosphonium Salt‐Catalyzed Asymmetric Cyclodearomatization of 2‐Nitroindoles and 2‐Nitrobenzofurans for Constructing CF
3
‐Containing Spiro‐Polycycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering, Hunan Institute of Engineering Xiangtan 411104 People's Republic of China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Guowei Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
24
|
Nair SR, Baire B. Recent Dearomatization Strategies of Benzofurans and Benzothiophenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sindoori R. Nair
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Beeraiah Baire
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
25
|
Zheng C, You SL. Advances in Catalytic Asymmetric Dearomatization. ACS CENTRAL SCIENCE 2021; 7:432-444. [PMID: 33791426 PMCID: PMC8006174 DOI: 10.1021/acscentsci.0c01651] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 05/25/2023]
Abstract
Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
26
|
Chen L, Zou YX, Zheng SL, Liu XY, Yang HL, Zhang J, Zeng Y, Duan L, Wen Z, Ni HL. Dearomative 1,6-addition of P(O)–H to in situ formed p-QM-like ion pairs from 2-benzofuryl-ols to C3-phosphinoyl hydrobenzofurans. Org Chem Front 2021. [DOI: 10.1039/d1qo00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a dearomative C3-phosphorylation and a tandem C3-phosphorylation/aromatization of 2-benzofuryl-ols with P(O)–H species to afford C3-phosphinoyl hydrobenzofurans and benzofurans, respectively.
Collapse
|
27
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
28
|
Zhang J, Liu M, Huang M, Liu H, Yan Y, Zhang X. Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00128k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines provided a large variety of succinimide fused indolines in moderate to good yields with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hui Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
29
|
Xie X, Xiong SS, Li X, Huang H, Wu FB, Shen PF, Peng C, He G, Han B. Design and organocatalytic synthesis of spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors. Org Chem Front 2021. [DOI: 10.1039/d0qo01626h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An organocatalytic 1,6-cycloaddition with exclusive α-regioselectivity to synthesize designed spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Shan-Shan Xiong
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiang Li
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - He Huang
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Feng-Bo Wu
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Peng-Fei Shen
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Cheng Peng
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Bo Han
- College of Medical Technology and School of Pharmacy
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
30
|
Jaillet A, Darcel C, Bayardon J, Schlachter A, Salomon C, Rousselin Y, Harvey P, Jugé S. Design of P-Chirogenic Aminophosphine–Phosphinite Ligands at Both Phosphorus Centers: Origin of Enantioselectivities in Pd-Catalyzed Allylic Reactions. J Org Chem 2020; 85:14391-14410. [DOI: 10.1021/acs.joc.0c00536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonin Jaillet
- Université de Bourgogne-Franche-Comté, Institut de Chimie Moléculaire (ICMUB-OCS, UMR-CNRS 6302), BP 47870, Dijon 21078 Cedex, France
| | - Christophe Darcel
- Université de Rennes, Institut des Sciences Chimiques de Rennes (ISCR, UMR-CNRS 6626), 35000 Rennes, France
| | - Jérôme Bayardon
- Université de Bourgogne-Franche-Comté, Institut de Chimie Moléculaire (ICMUB-OCS, UMR-CNRS 6302), BP 47870, Dijon 21078 Cedex, France
| | - Adrien Schlachter
- Université de Sherbrooke, Département de Chimie, Sherbrooke, Quebec, Canada J1K2R1
| | - Christine Salomon
- Université de Bourgogne-Franche-Comté, Institut de Chimie Moléculaire (ICMUB-OCS, UMR-CNRS 6302), BP 47870, Dijon 21078 Cedex, France
| | - Yoann Rousselin
- Université de Bourgogne-Franche-Comté, Institut de Chimie Moléculaire (ICMUB-OCS, UMR-CNRS 6302), BP 47870, Dijon 21078 Cedex, France
| | - Pierre Harvey
- Université de Sherbrooke, Département de Chimie, Sherbrooke, Quebec, Canada J1K2R1
| | - Sylvain Jugé
- Université de Bourgogne-Franche-Comté, Institut de Chimie Moléculaire (ICMUB-OCS, UMR-CNRS 6302), BP 47870, Dijon 21078 Cedex, France
| |
Collapse
|
31
|
Salin AV, Khisamova DR. Addition of triphenylphosphine to electron-deficient alkenes in mixed binary solvents: Overcoming the problem of preferential solvation to determine the reaction order with respect to protic solvent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Yuan WC, Zhou XJ, Zhao JQ, Chen YZ, You Y, Wang ZH. Catalytic Enantioselective Dearomatization/Rearomatization of 2-Nitroindoles to Access 3-Indolyl-3′-Aryl-/Alkyloxindoles: Application in the Formal Synthesis of Cyclotryptamine Alkaloids. Org Lett 2020; 22:7088-7093. [DOI: 10.1021/acs.orglett.0c02350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
33
|
Babu KR, Li Y, Xu W, Tang Y, Zhang W, Xu S. Multicomponent benzannulation of allylic P-ylides with isocyanates or aldehydes for construction of anilines and biaryls. Chem Commun (Camb) 2020; 56:8865-8868. [PMID: 32638748 DOI: 10.1039/d0cc03461d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reactivity of allylic phosphorus ylides generated in situ from alkoxycarbonylmethylenephosphoranes and propiolates is investigated toward isocyanates and aromatic aldehydes, which leads to one-pot multicomponent benzannulations for efficient synthesis of polysubstituted anilines and biaryls, respectively. The mechanism may involve a tandem [2+2] cycloaddition/fragmentation/Wittig/cyclization/elimination/aromatization sequence.
Collapse
Affiliation(s)
- Kaki Raveendra Babu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yang Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Wenbo Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Wenquan Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China.
| | - Silong Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
34
|
Cao MY, Ma BJ, Lao ZQ, Wang H, Wang J, Liu J, Xing K, Huang YH, Gan KJ, Gao W, Wang H, Hong X, Lu HH. Optically Active Flavaglines-Inspired Molecules by a Palladium-Catalyzed Decarboxylative Dearomative Asymmetric Allylic Alkylation. J Am Chem Soc 2020; 142:12039-12045. [PMID: 32584568 DOI: 10.1021/jacs.0c05113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the aid of a class of newly discovered Trost-type bisphosphine ligands bearing a chiral cycloalkane framework, the Pd-catalyzed decarboxylative dearomative asymmetric allylic alkylation (AAA) of benzofurans was achieved with high efficiency [0.2-1.0 mol% Pd2(dba)3/L], good generality, and high enantioselectivity (>30 examples, 82-99% yield and 90-96% ee). Moreover, a diversity-oriented synthesis (DOS) of previously unreachable flavaglines is disclosed. It features a reliable and scalable sequence of the freshly developed Tsuji-Trost-Stoltz AAA, a Wacker-Grubbs-Stoltz oxidation, an intra-benzoin condensation, and a conjugate addition, which allows the efficient construction of the challenging and compact cyclopenta[b]benzofuran scaffold with contiguous stereocenters. This strategy offers a new avenue for developing flavagline-based drugs.
Collapse
Affiliation(s)
- Meng-Yue Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhi-Qi Lao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Juan Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kuan Xing
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yu-Hao Huang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei Gao
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
35
|
Chaki BM, Takenaka K, Zhu L, Tsujihara T, Takizawa S, Sasai H. Enantioselective One‐pot Synthesis of 3‐Azabicyclo[3.1.0]hexanes
via
Allylic Substitution and Oxidative Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bijan Mohon Chaki
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Kazuhiro Takenaka
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Linpeng Zhu
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Tetsuya Tsujihara
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial ResearchOsaka University, Mihogaoka, Ibaraki-shi Osaka 567-0047 Japan
| |
Collapse
|
36
|
Zhuo JR, Quan BX, Zhao JQ, Zhang ML, Chen YZ, Zhang XM, Yuan WC. Base-mediated [4+2] annulation of electron-deficient nitrobenzoheterocycles and α,α-dicyanoalkenes in water: Facile access to structurally diverse functionalized dibenzoheterocyclic compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Halder P, Pol MD, Ahire MM, Mhaske SB. Construction of unique SCF 3-containing building blocks via allylic alkylation of Morita-Baylis-Hillman adducts. Org Biomol Chem 2020; 18:2085-2093. [PMID: 32115601 DOI: 10.1039/d0ob00104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis base-catalyzed allylic alkylation of Morita-Baylis-Hillman adducts with α-SCF3 ketones has been demonstrated. The developed strategy provides efficient access to a series of highly functionalized scaffolds featuring trifluoromethanesufinyl motif on a stereogenic carbon.
Collapse
Affiliation(s)
- Priyanka Halder
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune - 411008, India.
| | | | | | | |
Collapse
|
38
|
Wang H, Hu Q, Wang M, Guo C. Enantioselective [4+2] Annulation to the Concise Synthesis of Chiral Dihydrocarbazoles. iScience 2020; 23:100840. [PMID: 32004992 PMCID: PMC6995259 DOI: 10.1016/j.isci.2020.100840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
A highly efficient phosphine-catalyzed enantioselective [4 + 2] annulation of allenoates with 3-nitroindoles or 3-nitrobenzothiophenes has been developed. The protocol represents a unique dearomatization–aromatization process to access functionalized dihydrocarbazoles or dihydrodibenzothiophenes with high optical purity (up to 97% ee) under mild reaction conditions. The synthetic utility of the highly enantioselective [4 + 2] annulation enables a concise synthesis of analgesic agent. High regio-, chemo-, and enantioselectivity Broad substrate scope Dearomatization/aromatization steps proceed under mild conditions Concise synthesis of chiral analgesic agent
Collapse
Affiliation(s)
- Haiyang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qingdong Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingxu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
39
|
Abstract
The 1,3-dipolar cycloaddition reaction is a powerful and versatile strategy for
the synthesis of carbocyclic and heterocyclic five-membered rings. Herein, the most recent
developments on the [3+2] cycloaddition reactions using allenes acting either as dipolarophiles
or 1,3-dipole precursors, are highlighted. The recent contributions on the
phosphine- and transition metal-catalyzed [3+2] annulations involving allenes as substrates
are also covered, with the exception of those in which the formation of a 1,3-dipole
(or synthetic equivalent) is not invoked.
This review summarizes the most relevant research in which allenes are used as building
blocks for the construction of structurally diverse five-membered rings via [3+2] annulation
reactions.
Collapse
Affiliation(s)
- Ana L. Cardoso
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria I.L. Soares
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
40
|
Ge ZZ, Yang L, You Y, Wang ZH, Xie KX, Zhou MQ, Zhao JQ, Yuan WC. Asymmetric dearomatization of 2-nitrobenzofurans by organocatalyzed one-step Michael addition to access 3,3′-disubstituted oxindoles. Chem Commun (Camb) 2020; 56:2586-2589. [DOI: 10.1039/c9cc09939e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient enantioselective dearomatization of 2-nitrobenzofurans was realized by organocatalyzed one-step Michael addition to access structurally diverse 3,3′-disubstituted oxindoles.
Collapse
Affiliation(s)
- Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yong You
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
41
|
Wu JH, Pan J, Du J, Wang X, Wang X, Jiang C, Wang T. Enantioselective Synthesis of Multifunctionalized 4H-Pyrans via Formal [4 + 2] Annulation Process by Bifunctional Phosphonium Salt Catalysis. Org Lett 2019; 22:395-399. [DOI: 10.1021/acs.orglett.9b04079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Juan Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoxia Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xuemei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
42
|
Wang Z, Wang DC, Xie MS, Qu GR, Guo HM. Enantioselective Synthesis of Fused Polycyclic Tropanes via Dearomative [3 + 2] Cycloaddition Reactions of 2-Nitrobenzofurans. Org Lett 2019; 22:164-167. [PMID: 31868372 DOI: 10.1021/acs.orglett.9b04108] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straight synthetic approach to fused polycyclic tropane scaffold formation through an asymmetric dearomatization cycloaddition process of 2-nitrobenzofurans with cyclic azomethine ylides was successfully developed. In the presence of a chiral copper complex, derived from Cu(OAc)2 and a diphosphine ligand, a series of fused polycyclic tropane derivatives were obtained in high yields (75-91%) with excellent enantioselectivities (90-98%). The utility of this method was showcased by the facile transformation of product.
Collapse
Affiliation(s)
- Zhen Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
43
|
Birbaum L, Gillard L, Gérard H, Oulyadi H, Vincent G, Moreau X, De Paolis M, Chataigner I. Dearomatization of 3‐Nitroindoles with Highly γ‐Functionalized Allenoates in Formal (3+2) Cycloadditions. Chemistry 2019; 25:13688-13693. [DOI: 10.1002/chem.201903455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Léo Birbaum
- UNIROUENINSA RouenCNRSCOBRANormandie Univ 76000 Rouen France
| | - Laurent Gillard
- UNIROUENINSA RouenCNRSCOBRANormandie Univ 76000 Rouen France
| | - Hélène Gérard
- CNRSLaboratoire de Chimie ThéoriqueLCT UMR7616Sorbonne Université 75005 Paris France
| | - Hassan Oulyadi
- UNIROUENINSA RouenCNRSCOBRANormandie Univ 76000 Rouen France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Univ. Paris-Sud, Université Paris-Saclay, CNRS UMR 8182 91405 Orsay cedex France
| | - Xavier Moreau
- Institut Lavoisier VersaillesUMR CNRS 8180Université de Versailles-St-Quentin-en-Yvelines, Université Paris Saclay 78035 Versailles cedex France
| | | | - Isabelle Chataigner
- UNIROUENINSA RouenCNRSCOBRANormandie Univ 76000 Rouen France
- CNRSLaboratoire de Chimie ThéoriqueLCT UMR7616Sorbonne Université 75005 Paris France
| |
Collapse
|