1
|
Ke Y, Sun Y, Liao A, Zhao F, Tan Y, Tan C. Conjugated Polyelectrolyte-Based Sensor Arrays: from Sensing Mechanisms to Artificial Sensory System Conceptualization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16396-16409. [PMID: 40048404 DOI: 10.1021/acsami.4c22848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
In the past decades, conjugated polyelectrolytes (CPEs) have become prominent in sensing applications due to their unique properties, including strong and tunable light absorption, high sensitivity, water solubility, and biocompatibility. Inspired by mammalian olfactory and gustatory systems, CPE-based sensor arrays have made significant strides in discriminating structurally similar analytes and complex mixtures for various applications. This review consolidates recent advancements in CPE-based sensor arrays, highlighting rational design, controllable fabrication, and effective data processing methods. It covers the fundamentals of CPE fluorescence sensing, emphasizing design strategies for sensor array units and data processing techniques. The broad applicability of CPE-based sensor arrays is demonstrated across diverse domains, including environmental monitoring (e.g., detecting metal ions and explosives), medical diagnostics (e.g., sensing disease markers and analyzing biological samples), and food safety (e.g., assessing the freshness, quality, and source of food products). Further, challenges and future directions in the field are discussed to inspire further research and development in this area.
Collapse
Affiliation(s)
- Yulei Ke
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuanjie Sun
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Anhui Liao
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Fangxi Zhao
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Kuang Y, Ni W, Liu H, Han J. Poly(p-Phenyleneethynylene)s-Based Sensor Array for Diagnosis of Clinical Diseases. ChemMedChem 2025; 20:e202400686. [PMID: 39581864 DOI: 10.1002/cmdc.202400686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Inspired by the mammalian taste and olfactory systems, array-based pattern recognition technology has demonstrated significant potential in discerning subtle differences between highly similar compounds and complex mixtures, owing to their unique parallel detection mechanism based on cross-reactive signals. While optical sensor array has been extensively employed in the field of chemical sensing, they encounter significant challenges in non-specific recognition of multiple analytes at low concentrations, particularly in rife environments with complex interferences. Poly(p-phenylene ethynylene)s (PPEs) offer substantial advantages in detecting multi-analytes at low concentrations, owing to its distinctive optical properties, including the "molecular wire" effect, fluorescence super-amplification and super-quenching. This is particularly promising for the parallel detection of ultra-low concentration multi-biomarkers in clinical diseases. As the continuous development of PPEs sensor array, more sensitive methods for rapid detection of clinical disease will be further developed. It will promote the further development of the field of early diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Yongbin Kuang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Han Liu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
3
|
Bosco MS, Naud-Martin D, Gonzalez-Galindo C, Auvray M, Araya-Farias M, Gropplero G, Rozenholc Y, Topcu Z, Gaucher JF, Tsatsaris V, Descroix S, Mahuteau-Betzer F, Gagey-Eilstein N. Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:8236-8247. [PMID: 39530215 DOI: 10.1021/acsabm.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.
Collapse
Affiliation(s)
- Monica Swetha Bosco
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Carlos Gonzalez-Galindo
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Marie Auvray
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Monica Araya-Farias
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Giacomo Gropplero
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Zeki Topcu
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Jean-Francois Gaucher
- CiTCoM, Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, 75006 Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetric, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 bd Port-Royal, 75014 Paris, France
| | - Stéphanie Descroix
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Nathalie Gagey-Eilstein
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| |
Collapse
|
4
|
Tomita S, Nagai-Okatani C. Expanding the recognition of monosaccharides and glycans: A comprehensive analytical approach using chemical-nose/tongue technology and a comparison to lectin microarrays. BBA ADVANCES 2024; 7:100129. [PMID: 39790466 PMCID: PMC11714387 DOI: 10.1016/j.bbadva.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Chemical-nose/tongue technologies are emerging as promising analytical tools for glycan analysis. After briefly introducing the importance of glycans and their analytical methods, including the lectin microarray (LMA) as one of the gold standards, the fundamental principles underlying chemical noses/tongues are explained and various applications for monosaccharides and glycans are introduced. Then, the similarities and differences of these two approaches are discussed. While both technologies aim to comprehensively profile biospecimens based on 'interaction patterns' between multiple recognition probes and analytes, each has its own strengths. LMAs excel at specific, targeted analysis based on defined lectin-glycan interactions, whereas chemical nose/tongue offers greater flexibility and expandability in terms of system design, making it well-suited for discovering unknown glycan profiles and detecting broader differences in glycan mixtures. In the future, chemical-nose/tongue technologies may be applied to niche areas in glycan analysis and become powerful tools that complement LMA techniques.
Collapse
Affiliation(s)
- Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Chiaki Nagai-Okatani
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
5
|
Jo SB, Lee JH, Lee J, Oh MM, Lee JS. Differential Sensing Approach as a Pattern-based Discrimination for Biological Samples. Chemistry 2024; 30:e202402871. [PMID: 39219235 DOI: 10.1002/chem.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The differential sensing approach uses fingerprint patterning to distinguish uncharacterized biological samples. Inspired by natural sensory systems, an array of cross-reactive sensors generates unique response fingerprint depending on the samples. Until today, this array system has been developed using various materials, including the library of surface-charged nanoparticles and chemosensors. Many differential array systems have demonstrated accurate identification of bacterial species, viral subtypes, and cancer cells, as well as distinguishing disease states in blood or urine. This capability is particularly important for distinguishing between normal and abnormal states when specific marker molecules have not yet been identified, providing a powerful diagnostic tool. In this concept, we summarized representative outcomes of differential sensing applications for biological sample discrimination.
Collapse
Affiliation(s)
- Seon-Beom Jo
- Department of Pharmacology, Korea University College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
- Department of Urology, Korea University College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jung Hoon Lee
- Department of Pharmacology, Korea University College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jane Lee
- Department of Pharmaceutical Sciences, Northestern University, 360 Huntington Avenue, Boston, MA-02115, USA
| | - Mi Mi Oh
- Department of Urology, Korea University College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
6
|
Behera P, Baidya S, Sahoo J, Jaiswal K, Singh DP, Pradhan S, Saini DK, Agasti SS, De M. Multistep Array-Based Sensing of Bioanalytes Using Modified MoS 2, Fluorescence Proteins, and Cucurbituril. ACS APPLIED BIO MATERIALS 2024; 7:6371-6381. [PMID: 39321472 DOI: 10.1021/acsabm.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
One pot sensor by multiplexing in the array is an attractive system for rapid discrimination of multiple analytes. Multiplexing can be achieved in two ways, i.e., using multiple signal transducers or adding sequential agents to the sensor media. Herein, we have used a combination of both multichannel and sequential ON-OFF strategies for the discrimination of different bioanalytes. The sensor array was constructed by implementing positively charged MoS2 as a receptor and different fluorescent proteins possessing distinguishable emission profiles as signal transducers. The sensing setup was constructed with the interaction between oppositely charged MoS2 and the host-guest combination between a cationic headgroup of MoS2 and Cucurbit [7] uril (CB7) to alter the fluorescence of signal transducers in situ noncovalently. Electrodynamic analysis and optical assays suggest that the electrostatic interaction played a major role in the modulation of the fluorescence outcomes in the array. Both cationic and anionic proteins were discriminated at a 50 nM concentration. The detection limit of the sensor array by using β-gal protein was found to be 1 nM. The sensor array was further implemented for the discrimination of normal and diseased cell lines and lysates, which indicates the versatile detection ability of this reported sensor array.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sourav Baidya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Komal Jaiswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Devendra Pratap Singh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Soumen Pradhan
- New Chemistry Unit, Chemistry & Physics of Materials Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Deepak Kumar Saini
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sarit S Agasti
- New Chemistry Unit, Chemistry & Physics of Materials Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
8
|
Xu L, Wang H, Xu Y, Cui W, Ni W, Chen M, Huang H, Stewart C, Li L, Li F, Han J. Machine Learning-Assisted Sensor Array Based on Poly(amidoamine) (PAMAM) Dendrimers for Diagnosing Alzheimer's Disease. ACS Sens 2022; 7:1315-1322. [PMID: 35584464 DOI: 10.1021/acssensors.2c00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, and the early diagnosis of AD remains challenging. Here we have developed a fluorescent sensor array composed of three modified polyamidoamine dendrimers. Proteins of various properties were differentiated via this array with 100% accuracy, proving the rationality of the array's design. The mechanism of the fluorescence response was discussed. Furthermore, the robust three-element array enables parallel detection of multiple Aβ40/Aβ42 aggregates (0.5 μM) in diverse interferents, serum media, and cerebrospinal fluid (CSF) with high accuracy, through machine learning algorithms, demonstrating the tremendous potential of the sensor array in Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Wenyu Cui
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Hui Huang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
9
|
Jiang M, Chattopadhyay AN, Geng Y, Rotello VM. An array-based nanosensor for detecting cellular responses in macrophages induced by femtomolar levels of pesticides. Chem Commun (Camb) 2022; 58:2890-2893. [PMID: 35141736 PMCID: PMC10587896 DOI: 10.1039/d1cc07100a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Environmental agents can induce cellular responses at concentrations far below the limits of detection for current viability and biomarker-based cell sensing platforms. Hypothesis-free cell sensor platforms can be engineered to maximize sensitivity to phenotypic changes, providing a tool for lowering the threshold for detecting cellular changes. Pesticides are one of the most prevalent sources of chemical exposure due to their use in food and agriculture fields. We report here a FRET-based nanosensor array engineered to maximize responses to changes at cell surfaces after pesticide exposure. This sensor array robustly detected macrophage responses to femtomolar concentrations of common pesticides-orders of magnitude lower concentrations than traditional toxicological and biomarker-based strategies. Significantly, this platform was able to classify these responses by pesticide class, demonstrating the ability to distinguish between changes induced by these different agents. Taken together, hypothesis-free cell surface sensing is a promising tool for detecting the effects of ultra-trace environmental chemicals on human health, as well as detecting threshold responses for use in drug discovery and diagnostics.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Tomita S, Ishihara S, Kurita R. A polymer-based chemical tongue for the non-invasive monitoring of osteogenic stem-cell differentiation by pattern recognition of serum-supplemented spent media. J Mater Chem B 2022; 10:7581-7590. [DOI: 10.1039/d2tb00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-invasive techniques to characterize cultured cells is invaluable not only to ensure the reproducibility of cell research, but also for quality assurance of industrial cell products for...
Collapse
|
11
|
Liu MX, Zhang H, Zhang XW, Chen S, Yu YL, Wang JH. Nanozyme Sensor Array Plus Solvent-Mediated Signal Amplification Strategy for Ultrasensitive Ratiometric Fluorescence Detection of Exosomal Proteins and Cancer Identification. Anal Chem 2021; 93:9002-9010. [PMID: 34143614 DOI: 10.1021/acs.analchem.1c02010] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor exosomes with molecular marker-proteins inherited from their parent cells have emerged as a promising liquid biopsy biomarker for cancer diagnosis. However, facile, robust, and sensitive detection of exosomal proteins remains challenging. Therefore, a nanozyme sensor array is constructed by using aptamer-modified C3N4 nanosheets (Apt/C3N4 NSs) together with a solvent-mediated signal amplification strategy for ratiometric fluorescence detection of exosomal proteins. Three aptamers specific to exosomal proteins are selected to construct Apt/C3N4 NSs for high specific recognition of exosomal proteins. The adsorption of aptamers enhances the catalytic activity of C3N4 NSs as a nanozyme for oxidation of o-phenylenediamine (oPD) to 2,3-diaminophenazine (DAP). In the presence of target exosomes, the strong affinity between aptamer and exosome leads to the disintegration of Apt/C3N4 NSs, resulting in a decrease of catalytic activity, thereby reducing the production of DAP. The ratiometric fluorescence signal based on a photoinduced electron transfer (PET) effect between DAP and C3N4 NSs is dependent on the concentration of DAP generated, thus achieving highly facile and robust detection of exosomal proteins. Remarkably, the addition of organic solvent-1,4-dioxane can sensitize the luminescence of DAP without affecting the intrinsic fluorescence of C3N4 NSs, achieving the amplification of the aptamer-exosome recognition events. The detection limit for exosome is 2.5 × 103 particles/mL. In addition, the accurate identification of cancer can be achieved by machine learning algorithms to analyze the difference of exosomal proteins from different patients' blood. We hope that this facile, robust, sensitive, and versatile nanozyme sensor array would become a promising tool in the field of cancer diagnosis.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - He Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
12
|
Okada H, Mimura M, Tomita S, Kurita R. Affinity Diversification of a Polymer Probe for Pattern-recognition-based Biosensing Using Chemical Additives. ANAL SCI 2021; 37:713-719. [PMID: 33518589 DOI: 10.2116/analsci.20scp23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pattern-recognition-based sensing has attracted attention as a promising alternative to conventional sensing methods that rely on selective recognition. Here, we report on novel strategy using chemical additives with the ability to modulate probe/analyte interactions to more easily construct pattern-recognition-based sensing systems for proteins and cells. The fluorescence of dansyl-modified cationic poly-L-lysine (PLL-Dnc) is enhanced upon binding to proteins in aqueous solution, while the addition of salts, inert polymers, or alcohols modulates the protein/PLL-Dnc interactions via a variety of mechanisms. Subsequent readout of the fluorescence changes produces response patterns that reflect the characteristics of the analytes. Multivariate analysis of the response patterns allowed for accurate identification of not only eight structurally similar albumin homologues, but also four mammalian cells. This strategy, which uses inexpensive and common additives, significantly improves the accessibility of pattern-recognition-based sensing, which will offer new opportunities for the detection of various bioanalytes.
Collapse
Affiliation(s)
- Hiroki Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology.,Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Masahiro Mimura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology.,Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology.,Faculty of Pure and Applied Sciences, University of Tsukuba.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
13
|
Zhang XW, Liu MX, He MQ, Chen S, Yu YL, Wang JH. Integral Multielement Signals by DNA-Programmed UCNP-AuNP Nanosatellite Assemblies for Ultrasensitive ICP-MS Detection of Exosomal Proteins and Cancer Identification. Anal Chem 2021; 93:6437-6445. [PMID: 33844518 DOI: 10.1021/acs.analchem.1c00152] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are expected to be used as cancer biomarkers because they carry a variety of cancer-related proteins inherited from parental cells. However, it is still challenging to develop a sensitive, robust, and high-throughput technique for simultaneous detection of exosomal proteins. Herein, three aptamers specific to cancer-associated proteins (CD63, EpCAM, and HER2) are selected to connect gold nanoparticles (AuNPs) as core with three different elements (Y, Eu, and Tb) doped up-conversion nanoparticles (UCNPs) as satellites, thereby forming three nanosatellite assemblies. The presence of exosomes causes specific aptamers to recognize surface proteins and release the corresponding UCNPs, which can be simultaneously detected by inductively coupled plasma-mass spectrometry (ICP-MS). It is worth noting that rare earth elements are scarcely present in living systems, which minimize the background for ICP-MS detection and exclude potential interferences from the coexisting species. Using this method, we are able to simultaneously detect three exosomal proteins within 40 min, and the limit of detection for exosome is 4.7 × 103 particles/mL. The exosomes from seven different cell lines (L-02, HepG2, GES-1, MGC803, AGS, HeLa, and MCF-7) can be distinguished with 100% accuracy by linear discriminant analysis. In addition, this analytical strategy is successfully used to detect exosomes in clinical samples to distinguish stomach cancer patients from healthy individuals. These results suggest that this sensitive and high-throughput analytical strategy based on ICP-MS has the potential to play an important role in the detection of multiple exosomal proteins and the identification of early cancer.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Qi He
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| |
Collapse
|
14
|
A Multichannel Pattern-Recognition-Based Protein Sensor with a Fluorophore-Conjugated Single-Stranded DNA Set. SENSORS 2020; 20:s20185110. [PMID: 32911729 PMCID: PMC7570997 DOI: 10.3390/s20185110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Recently, pattern-recognition-based protein sensing has received considerable attention because it offers unique opportunities that complement more conventional antibody-based detection methods. Here, we report a multichannel pattern-recognition-based sensor using a set of fluorophore-conjugated single-stranded DNAs (ssDNAs), which can detect various proteins. Three different fluorophore-conjugated ssDNAs were placed into a single microplate well together with a target protein, and the generated optical response pattern that corresponds to each environment-sensitive fluorophore was read via multiple detection channels. Multivariate analysis of the resulting optical response patterns allowed an accurate detection of eight different proteases, indicating that fluorescence signal acquisition from a single compartment containing a mixture of ssDNAs is an effective strategy for the characterization of the target proteins. Additionally, the sensor could identify proteins, which are potential targets for disease diagnosis, in a protease and inhibitor mixture of different composition ratios. As our sensor benefits from simple construction and measurement procedures, and uses accessible materials, it offers a rapid and simple platform for the detection of proteins.
Collapse
|
15
|
Sugai H, Tomita S, Kurita R. Pattern-recognition-based Sensor Arrays for Cell Characterization: From Materials and Data Analyses to Biomedical Applications. ANAL SCI 2020; 36:923-934. [PMID: 32249248 DOI: 10.2116/analsci.20r002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To capture a broader scope of complex biological phenomena, alternatives to conventional sensing based on specificity for cell detection and characterization are needed. Pattern-recognition-based sensing is an analytical method designed to mimic mammalian sensory systems for analyte identification based on the pattern recognition of multivariate data, which are generated using an array of multiple probes that cross-reactively interact with analytes. This sensing approach is significantly different from conventional specific cell sensing based on highly specific probes, including antibodies against biomarkers. Encouraged by the advantages of this technique, such as the simplicity, rapidity, and tunability of the systems without requiring a priori knowledge of biomarkers, numerous sensor arrays have been developed over the past decade and used in a variety of cell sensing applications; these include disease diagnosis, drug discovery, and fundamental research. This review summarizes recent progress in pattern-recognition-based cell sensing, with a particular focus on guidelines for designing materials and arrays, techniques for analyzing response patterns, and applications of sensor systems that are focused primarily for the biomedical field.
Collapse
Affiliation(s)
- Hiroka Sugai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shunsuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST)
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST).,Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
16
|
Liu MX, Chen S, Ding N, Yu YL, Wang JH. A carbon-based polymer dot sensor for breast cancer detection using peripheral blood immunocytes. Chem Commun (Camb) 2020; 56:3050-3053. [PMID: 32048645 DOI: 10.1039/c9cc10016d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We constructed a carbon-based polymer dot (CPD) sensor to detect breast cancer based on the differences of peripheral blood cells, providing a new minimally invasive method for cancer diagnosis. This simple and extensible system exhibits clinically relevant accuracy in terms of cancer identification, making it an attractive strategy for diagnosis and prognosis.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Na Ding
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|