1
|
Yao J, Zeng X. Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol. Mikrochim Acta 2022; 190:18. [PMID: 36495321 DOI: 10.1007/s00604-022-05573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Nanosheets of anatase TiO2 and CdS quantum dots modified with thioglycolic acid (TGA-CdS QDs) were prepared and hierarchically modified on the indium tin oxides (ITO) electrodes. The heterojunction structure is formed to improve the light capture ability and carrier migration, significantly enhancing the sensitivity of photoelectrochemical (PEC) biosensors. Specific DNA sequences labeled with TGA-CdS QDs were placed on the electrodes to prepare a biosensor for the detection of chloramphenicol with ultrahigh selectivity. In addition, the heterojunction structure and the principle of photocurrent signal amplification on the electrode are described in detail. Under the optimal conditions, the photoelectrochemical biosensors showed good reproducibility and stability for chloramphenicol with a linear response in the range 10-10,000 pM and a limit of detection (LOD) of 0.23 pM. Due to the specific recognition of base pairs, the sensor has excellent anti-interference ability in practical applications. An effective method was developed for the accurate detection of antibiotics with far reaching prospects.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Xiang Zeng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Loh XJ, Ruan J. Photoelectrochemical nanosensors: An emerging technique for tumor liquid biopsy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Wang Y, Yang M, Shi H, Ge S, Wang X, Yu J. Photoelectrochemical Detection of Exosomal miRNAs by Combining Target-Programmed Controllable Signal Quenching Engineering. Anal Chem 2022; 94:3082-3090. [PMID: 35133793 DOI: 10.1021/acs.analchem.1c04086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs extracted from exosomes (exosomal miRNAs) have recently emerged as promising biomarkers for early prognosis and diagnosis. Thus, the development of an effective approach for exosomal miRNA monitoring has triggered extensive attention. Herein, a sensitive photoelectrochemical (PEC) biosensing platform is demonstrated for exosomal miRNA assay via the target miRNA-powered λ-exonuclease for the amplification strategy. The metal-organic framework (MOF)-decorated WO3 nanoflakes heterostructure is constructed and implemented as the photoelectrode. Also, a target exosomal miRNA-activatable programmed release nanocarrier was fabricated, which is responsible for signal control. Hemin that acted as the electron acceptor was prior entrapped into the programmed control release nanocarriers. Once the target exosomal miRNAs-21 was introduced, the as-prepared programmed release nanocarriers were initiated to trigger the release of hemin, which enabled the quenching of the photocurrent. Under the optimized conditions, the level of exosomal miRNAs-21 could be accurately tracked ranging from 1 fM to 0.1 μM with a low detection limit of 0.5 fM. The discoveries illustrate the possibility for the rapid and efficient diagnosis and prognosis prediction of diseases based on the detection of exosomal miRNAs-21 and would provide feasible approaches for the fabrication of an efficient platform for clinical applications.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
4
|
Sun Z, Tong Y, Zhao L, Li J, Gao F, Wang C, Li H, Du L, Jiang Y. MoS 2@Ti 3C 2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 2022; 238:123077. [PMID: 34814060 DOI: 10.1016/j.talanta.2021.123077] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
As a class of newly identified biomarkers, miRNAs show enormous potential in cancer diagnosis. The sensitive detection of abnormal miRNAs concentration to realize early diagnosis of malignant tumors is a frontier in the field of biosensing. In this work, a photoelectrochemical (PEC) biosensor based on MoS2@Ti3C2 nanohybrid was fabricated for the ultrasensitive detection of miRNAs. The hybridization of Ti3C2 with excellent electron transfer capability significantly enhances the photocurrent response of the PEC biosensor. Moreover, the electrodeposition of Au nanoparticles on the surface of MoS2@Ti3C2 nanohybrid further enhances the photocurrent. The detection performance of the PEC biosensor has been tested using colorectal cancer-related exosomal miRNA (miR-92a-3p) as the target. The PEC biosensor shows a broad linear detection ranged from 1 fM to 100 nM and a calculated detection limit of 0.27 fM. In terms of selectivity, the PEC biosensor can distinguish miR-92a-3p from mismatched sequences. The 16 continuous radiation source on-off cycles test indicates the high stability of the PEC biosensor. Furthermore, the accurate detection of exosomal miR-92a-3p concentrations of patients and healthy controls demonstrates the clinical feasibility of the PEC biosensor. Based on these outcomes, the PEC biosensor exhibits the prospect of realizing the ultrasensitive point-of-care detection of miRNAs.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
5
|
Photoelectrochemical detection of microRNAs based on target-triggered self-assembly of energy band position-matched CdS QDs and C 3N 4 nanosheets. Mikrochim Acta 2022; 189:65. [PMID: 35064308 DOI: 10.1007/s00604-022-05168-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
An ultrasensitive photochemical biosensor based on the target miRNA-triggered catalytic hairpin assembly (CHA) reaction between Au nanoparticles (AuNPs)/C3N4 nanosheets and CdS quantum dots (QDs) was developed for the determination of miRNAs. Firstly, AuNPs/C3N4 nanosheets were immobilized onto a working glassy carbon electrode. Then, the hairpin probe 1 (H1) was loaded through Au-S bonding. Afterward, the unbound sites were blocked with 6-mercaptohexanol to avoid nonspecific adsorption. In the presence of the target miRNA, the CHA reaction between the H1 and hairpin probe 2-CdS QDs (H2-CdS QDs) could be triggered. As a result, the AuNPs/C3N4 nanosheet and CdS QDs were linked by the double helix structure H1-H2. Unlike the other CHA reactions, H2 used in this work is longer than H1 so that the AuNPs/C3N4 nanosheets could touch the CdS QDs. Given the matched energy band positions between the C3N4 nanosheet and CdS QDs, a strong photocurrent could be obtained after the CHA reaction was triggered by the target miRNA. In addition, p-type C3N4 nanosheets and n-type CdS QDs presented reduction photocurrents and oxidation photocurrents, respectively. Therefore, the photocurrents were vectors in this design that can eliminate the interference of nonspecific adsorption and avoid the generation of false-positive signals. Under the optimal conditions, the limit of detection was 92 aM. The constructed photoelectrochemical biosensor showed good reproducibility and selectivity in the analysis of serum samples, which indicates its great prospects in disease diagnostics and bioanalysis.
Collapse
|
6
|
Guo Y, Wang M, Shen F, Hu Z, Ding H, Yao W, Qian H. Sensitive detection of RNA based on concatenated self-fuelled strand displacement amplification and hairpin-AgNCs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:447-452. [PMID: 33355546 DOI: 10.1039/d0ay01762k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a self-fuelled amplification strategy (SFAS) is proposed, in which two strand displacement amplification (SDA) processes were concatenated for the proliferation of ssDNA. The ssDNA then initiated a polymerase action and caused the destruction of hairpin-templated silver nanoclusters (AgNCs), resulting in decreased fluorescence for sensing miRNA-21. This SFAS-based sensor is less complicated in design and facile in operation, because of the easy concatenation of SDA and mutual enzymes used in the signal output process. The sensitivity of this SFAS-based miRNA sensor was 1.78 × 10-11 M with a linear relationship in the range 0.02-1.0 × 10-9 M, and the recoveries of this method ranged from 82.07% to 106.58% with an average RSD of 10.96%.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Hun X, Xiong X, Ding J, Qin W. Photoelectric current as a highly sensitive readout for potentiometric sensors. Chem Commun (Camb) 2020; 56:3879-3882. [DOI: 10.1039/d0cc00138d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The photocurrent at a working electrode coated with a ZnSe/r-GO composite can be modulated by a polymeric membrane ion-selective electrode that works as a reference electrode.
Collapse
Affiliation(s)
- Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Xiaoli Xiong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediati-on
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediati-on
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Key Laboratory of Coastal Environmental Processes
- YICCAS
| |
Collapse
|
8
|
Wang Y, Xia L, Wei C, Wang H, Wang H, Yuan R, Wei S. Ultrasensitive photoelectrochemical microRNA biosensor based on doxorubicin sensitized graphitic carbon nitride assisted by a target-activated enzyme-free DNA walker. Chem Commun (Camb) 2019; 55:13082-13084. [DOI: 10.1039/c9cc06556c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, a photoelectrochemical biosensor was constructed based on a sensitization strategy of doxorubicin sensitized graphitic carbon nitride for ultrasensitive detection of microRNA-141 assisted by a target-activated enzyme-free DNA walker.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Lingying Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Chongyao Wei
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haihua Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haijun Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shaping Wei
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|