1
|
Luo Y, Peng X, Cheng C, Deng Y, Lei N, Feng S, Yu X. 3D Molybdenum Disulfide Nanospheres Loaded with Metformin to Enhance SCPP Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:201-216. [PMID: 38127723 DOI: 10.1021/acsami.3c14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conventional strontium-doped calcium polyphosphate (SCPP) ceramics have attracted a lot of attention due to good cytocompatibility and controlled degradation. However, their poor mechanical strength, brittleness, and difficulty in eliminating unavoidable postoperative inflammation and bacterial infections in practical applications limit their further clinical application. In this study, carboxylated molybdenum disulfide nanospheres (MoS2-COOH) were first prepared via a one-step hydrothermal method. The optimal doping concentration of MoS2-COOH was then incorporated into SCPP to overcome its poor mechanical strength. To further enhance the anti-inflammatory properties of scaffolds, metformin (MET) was loaded onto MoS2-COOH through covalent bond cross-linking (MoS2-MET). Then MoS2-MET was doped into SCPP (SCPP/MoS2-MET) according to the previously obtained concentration, resulting in the controlled and sustained release of MET from the SCPP/MoS2-MET scaffolds for 21 days in vitro. The SCPP/MoS2-MET scaffolds were shown to have good biological activity in vitro to promote stem cell proliferation and the potential to promote mineralization in vitro. It also showed good osteoimmunomodulatory activity could reduce the expression of proinflammatory factors and effectively induce the differentiation of BMSCs under inflammatory conditions, upregulating the expression of relevant osteoblastic cytokines. In addition, SCPP/MoS2-MET scaffolds could effectively inhibit Staphylococcus aureus and Escherichia coli. In vivo experiments also demonstrated better osteogenic potential of SCPP/MoS2-MET scaffolds compared with the other scaffold-samples. Thus, the introduction of carboxylated molybdenum disulfide nanospheres is a promising approach to improve the properties of SCPP and may provide a new modification strategy for inert ceramic scaffolds and the construction of multifunctional composite scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Chan Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
2
|
Zhou Z, Lu Z, Li S, Li Y, Tan G, Hao Y, Wang Y, Huang Y, Zhang X, Li S, Chen C, Wang G. High-Performance Ternary NiCoMo Electrocatalyst with Three-Dimensional Nanosheets Array Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3716. [PMID: 36364492 PMCID: PMC9655373 DOI: 10.3390/nano12213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Oxygen evolution reaction is a key process in hydrogen production from water splitting. The development of non-noble metal electrode materials with high efficiency and low cost has become the key factor for large-scale hydrogen production. Binary NiCo-layered double hydroxide (LDH) has been used as a non-noble metal electrocatalyst for OER, but its overpotential is still large. The microstructure of the catalyst is tuned by doping Mo ions into the NiCo-LDH/NF nanowires to form ternary NiCoMo-LDH/NF nanosheet catalysts for the purpose of enhancing the active sites and reducing the initial overpotential. Only 1.5 V (vs. reversible hydrogen electrode (RHE), ≈270 mV overpotential) is required to achieve a catalytic current density of 10 mA cm-2 and a small Tafel slope of 81.46 mV dec-1 in 1 M KOH solution, which manifests the best performance of NiCo-based catalysts reported up to now. Electrochemical analysis and micro-morphology show that the high catalytic activity of NiCoMo-LDH/NF is attributable to the change of the microstructure. The interconnected nanosheet arrays have the obvious advantages of electrolyte diffusion and ion migration. Thus, the active sites of catalysts are significantly increased, which facilitates the adsorption and desorption of intermediates. We conclude that NiCoMo-LDH/NF is a promising electrode material for its low cost and excellent electrocatalytic properties.
Collapse
Affiliation(s)
- Zhihao Zhou
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhi Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Luoyang Key Laboratory of High Purity Materials and Sputtering Targets, Henan University of Science and Technology, Luoyang 471003, China
| | - Shilin Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Yiting Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Gongliang Tan
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Yang Hao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Yu Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Yuzhao Huang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Xuefeng Zhang
- Fonlink Photoelectric (Luo Yang) Co., Ltd., Luoyang 471000, China
| | - Shuaifang Li
- Fonlink Photoelectric (Luo Yang) Co., Ltd., Luoyang 471000, China
| | - Chong Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Guangxin Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
- Fonlink Photoelectric (Luo Yang) Co., Ltd., Luoyang 471000, China
| |
Collapse
|
3
|
Manivelan N, Karuppanan S, Prabakar K. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30812-30823. [PMID: 35762731 DOI: 10.1021/acsami.2c06010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal sulfides (TMS) exhibit proliferated edge sites, facile electrode kinetics, and improved intrinsic electrical conductivity, which demand low potential requirements for total water splitting application. Here, we have propounded copper sulfide-coupled cobalt sulfide nanosheets grown on 3D nickel as an electrocatalyst for hydrogen (HER) and oxygen evolution (OER) reactions. The formation of djurleite copper sulfide with a Cu vacancy enables faster H+ ion transport and shows improved HER activity with a remarkably lower overpotential of 164 mV at 10 mA/cm2, whereas cobalt-incorporated copper sulfide undergoes cation exchange during synthesis and shows elevated OER activity with a lower overpotential of 240 mV at 10 mA/cm2 for the OER. Moreover, Cu2-xS/Co is said to have a hybrid CoS-CoS2 interface and provide Co2+ active sites on the surface and enable the fast adsorption of intermediate species (OH*, O*, and OOH*), which lowers the potential requirement. The copper vacancy and cation exchange with a hybrid CoS-CoS2 structure are helpful in supplying more surface reactive species and faster ion transport for the HER and OER, respectively. The full-cell electrolyzer requires a very low potential of 1.58 V to attain a current density of 10 mA/cm2, and it shows excellent stability for 50 h at 100 mA/cm2 as confirmed by the chronopotentiometry test.
Collapse
Affiliation(s)
- Nandapriya Manivelan
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Senthil Karuppanan
- Department of Physics, School of Advanced Sciences, VIT-AP University, Amaravati 522 237, Andhra Pradesh, India
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Ding L, Chang Y, Yang P, Gao W, Sun M, Bie Y, Yang L, Ma X, Guo Y. Facile synthesis of biocompatible L-cysteine-modified MoS 2 nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111371. [PMID: 32919699 DOI: 10.1016/j.msec.2020.111371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/31/2022]
Abstract
Photothermal therapy (PTT) can take advantage of the photothermal effects of photothermal agents to acquire the energy from laser irradiation and convert it into heat. This can intensively elevate the temperature of the surrounding environment to directly destroy the cancer cells. It is expected that PAs with strong absorption in near infrared (NIR) range might possess the ideal tissue-transparent feature and minimal damage to surrounding healthy tissues, beneficial to the practical application. Herein, well-dispersed L-cysteine modified MoS2 (MoS2-Cys) nanospheres with the average diameter of about 422 nm and strong NIR adsorption were successfully synthesized through a facile method. The as-prepared MoS2-Cys nanospheres are composed of nanosheets with the average thickness of about 13.7 nm. The photothermal conversion efficiency of the as-prepared MoS2-Cys nanospheres with the very low concentration of 50 μg/mL was determined to be 35% when exposed to 808 NIR laser at the power density of 0.8 W/cm2, much higher than those of the previous reports with same dose and power density. MoS2-Cys nanospheres possessed the good photothermal ablation effect to significantly inhibit the growth of tumor in vivo. Furthermore, MoS2-Cys nanospheres did not exhibit detectable side effects, suggesting their good in vitro and in vivo biocompatibility.
Collapse
Affiliation(s)
- Lina Ding
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengfei Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weihua Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengmeng Sun
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yameng Bie
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoming Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|