1
|
Yang C, Shi W, Tian J, Guo L, Zhao Y, Xia W. Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles. Beilstein J Org Chem 2024; 20:118-124. [PMID: 38264451 PMCID: PMC10804559 DOI: 10.3762/bjoc.20.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
A visible-light-promoted research protocol for constructing dihydropyrido[1,2-a]indolone skeletons is herein described proceeding through a cascade cyclization mediated by trifluoromethyl radicals. This method allows the efficient synthesis of various indole derivatives without the need of photocatalysts or transition-metal catalysts. Mechanism experiments indicate that the process involves a radical chain process initiated by the homolysis of Umemoto's reagent. This straightforward method enables a rapid access to heterocycles containing a trifluoromethyl group.
Collapse
Affiliation(s)
- Chuan Yang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Shi
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Guo C, Li L, Yan Q, Zhou H, Liu ZQ, Li Z. Photoinduced Tandem Cyanomethylation/Cyclization of Unsaturated Compounds: Access to Cyanomethylated 7- or 5-Membered N-Heterocycles. J Org Chem 2023; 88:12141-12149. [PMID: 37530034 DOI: 10.1021/acs.joc.3c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A cyanomethylation/cyclization of aryl acetylenes/ethylenes with bromoacetonitrile was finished in a photopromoted condition, which offers an efficient and mild protocol for the preparation of cyanomethylated 7- or 5-membered N-heterocycles with good yields. Meanwhile, trichloroacetonitrile was also compatible with this radical pathway. In addition, a variety of single-crystal X-ray diffraction measurements, scaled-up operations to 1 mmol, functional group transformations of final products, light on/off experiments, and even radial inhibition studies were smoothly performed in this tandem system.
Collapse
Affiliation(s)
- Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
3
|
Tan P, Lu L, Wang S, Wang J, Chen J, Zhang Y, Xie L, Yang S, Chen J, Zhang Z. Photo- or Electrochemical Cyclization of Dienes with Diselenides to Access Seleno-Benzo[ b]azepines. J Org Chem 2023. [PMID: 37220067 DOI: 10.1021/acs.joc.3c00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A cascade selenylation/cyclization of dienes with diselenides has been realized under visible-light irradiation or electrolysis conditions. Employing O2 or electricity as a "green" oxidant, this protocol provides a green and efficient method for an array of biologically important seleno-benzo[b]azepine derivatives in moderate to good yields. The direct sunlight irradiation and gram-scale reaction render the approach practical and attractive.
Collapse
Affiliation(s)
- Pengpeng Tan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Liwang Lu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shilong Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Junxin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jiayang Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yijia Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, P. R. China
| | - Shubin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinchun Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
4
|
Li Y, Li L, Guo C, Yan Q, Zhou H, Wang Y, Liu ZQ, Li Z. Nitro-Spirocyclization of Biaryl Ynones with tert-Butyl Nitrite: Access to NO 2-Substituted Spiro[5,5]trienones. J Org Chem 2023; 88:4854-4862. [PMID: 36947717 DOI: 10.1021/acs.joc.3c00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A metal/peroxide-free involved simple cascade 6-exo-trig spirocyclization of tert-butyl nitrite with biaryl ynones has been finished, which resulted in various NO2-modified spiro[5,5]trienones with good regioselectivity/yields. A variety of scaled-up experiments, reduction/epoxidation operations, and mechanistic studies were performed to verify the merits and spirocyclization process of this radical system. Finally, the structure of the spirocycles was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| |
Collapse
|
5
|
Pan ZT, Shen LM, Dagnaw FW, Zhong JJ, Jian JX, Tong QX. Minisci reaction of heteroarenes and unactivated C(sp 3)-H alkanes via a photogenerated chlorine radical. Chem Commun (Camb) 2023; 59:1637-1640. [PMID: 36683529 DOI: 10.1039/d2cc06486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Here, an efficient Minisci reaction of heteroarenes and unactivated C(sp3)-H alkanes was achieved using an inexpensive FeCl3 as a photocatalyst. The photogenerated chlorine radical contributed to the HAT of C-H and subsequently initiated this reaction. Surprisingly, salt water and even seawater can act as a chlorine radical source, which provided an enlightening idea for future organic synthesis methods.
Collapse
Affiliation(s)
- Zi-Tong Pan
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Li-Miao Shen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Fentahun Wondu Dagnaw
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jing-Xin Jian
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
6
|
Tian Y, Zheng L, Wang Z, Li Z, Fu W. Metal-Free Electrochemical Oxidative Difluoroethylation/Cyclization of Olefinic Amides To Construct Difluoroethylated Azaheterocycles. J Org Chem 2023; 88:1875-1883. [PMID: 36669162 DOI: 10.1021/acs.joc.2c02579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new strategy of electrochemical oxidative difluoroethylation to generate difluoroethyl radical with sodium difluoroethylsulfinate (DFES-Na) has been reported for the first time. The method allows quick access to a variety of valuable difluoroethylated azaheterocycles including oxindoles and isoquinoline-1,3-diones via radical tandem difluoroethylation/cyclization in moderate to good yields. The electrochemical cyclopropyldifluoromethylation of N-arylacrylamides also works well using this strategy. Moreover, radical capture and cyclic voltammetry (CV) experiments are also carried out to determine the proposed mechanism.
Collapse
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| |
Collapse
|
7
|
Recent advances in the synthesis of fluoroalkylated compounds using fluoroalkyl anhydrides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Pan ZT, Qi XK, Xiao Q, Liang XW, Zhong JJ, Jian JX, Tong QX. Regulable cross-coupling of alcohols and benzothiazoles via a noble-metal-free photocatalyst under visible light. Chem Commun (Camb) 2022; 58:8810-8813. [PMID: 35838543 DOI: 10.1039/d2cc03234a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we realize a regulable cross-coupling reaction using alcohols as alkylating reagents to functionalize benzothiazoles. Two types of cross-coupling products are obtained with the highest isolated yields of up to 99% and 90% for alkyl- and acetyl-derived benzothiazoles, respectively, which opens up a broad research prospect for expanding alcohols as alkylating reagents.
Collapse
Affiliation(s)
- Zi-Tong Pan
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Xu-Kuan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Qian Xiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Xi-Wen Liang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jian-Ji Zhong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
9
|
Ren Y, Yan Q, Li Y, Gao Y, Zhao J, Li L, Liu ZQ, Li Z. Free Radical Promoted Trifluoromethylthiolation of Alkynes to Access SCF 3-Containing Dibenzazepines or Dioxodibenzothiazepines. J Org Chem 2022; 87:8773-8781. [PMID: 35709505 DOI: 10.1021/acs.joc.2c00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation of aryl acetylenes with AgSCF3 provides a simple reaction system for the synthesis of SCF3-substituted dibenzazepines or dioxodibenzothiazepines with good Z/E selectivity. The single-crystal X-ray diffraction data confirms the structures of the final products. A series of scaled-up experiments, further transformations, and radical inhibition experiments were operated in the reaction system.
Collapse
Affiliation(s)
- Yingming Ren
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Jincan Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, People's Republic of China
| |
Collapse
|
10
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Zheng X, Shen Q, Yin C, Li L, Zhong T, Yu C. Photoinduced Three‐Component Difluoroamidosulfonylation/Bicyclization: Regioselectivity Synthesis of Seven‐Membered Dibenzosultams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qitao Shen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lianghao Li
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
12
|
Xiao Q, Tong QX, Zhong JJ. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules 2022; 27:molecules27030619. [PMID: 35163886 PMCID: PMC8839682 DOI: 10.3390/molecules27030619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Visible-light photoredox catalysis has been established as a popular and powerful tool for organic transformations owing to its inherent characterization of environmental friendliness and sustainability in the past decades. The thiol-ene/yne reactions, the direct hydrothiolation of alkenes/alkynes with thiols, represents one of the most efficient and atom-economic approaches for the carbon-sulfur bonds construction. In traditional methodologies, harsh conditions such as stoichiometric reagents or a specialized UV photo-apparatus were necessary suffering from various disadvantages. In particular, visible-light photoredox catalysis has also been demonstrated to be a greener and milder protocol for the thiol-ene/yne reactions in recent years. Additionally, unprecedented advancements have been achieved in this area during the past decade. In this review, we will summarize the recent advances in visible-light photoredox catalyzed thiol-ene/yne reactions from 2015 to 2021. Synthetic strategies, substrate scope, and proposed reaction pathways are mainly discussed.
Collapse
Affiliation(s)
- Qian Xiao
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Qing-Xiao Tong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| | - Jian-Ji Zhong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- The Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| |
Collapse
|
13
|
Liang RB, Zhu CM, Song PQ, Zhao LM, Tong QX, Zhong JJ. External oxidant-free and selective thiofunctionalization of alkenes enabled by photoredox-neutral catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox approach was reported to realize a highly selective three-component thiohydroxylation, thioalkoxylation and thioamination of vinylarenes towards valuable vicinal S,O- and S,N-disubstituted molecules under mild conditions.
Collapse
Affiliation(s)
- Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Pei-Qi Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Lei-Min Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
14
|
Xiao Q, Tong QX, Zhong JJ. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Zhao X, Xia Z, Zhang M, Zhou N. Radical-Mediated Tandem Cyclization to Construct Seven-Membered Nitrogen/Oxygen Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Ji X, Fu R, Wang S, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch Reaction of Phenol/ Arylamine-Linked 1,6-Enynes with Perhalogenated Methane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Xia D, Duan XF. Tandem vinyl radical Minisci-type annulation on pyridines: one-pot expeditious access to azaindenones. Chem Commun (Camb) 2021; 57:13570-13573. [PMID: 34846057 DOI: 10.1039/d1cc06204b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new regiospecific alkylative/alkenylative cascade annulation of pyridines has been achieved whilst the corresponding classic Minisci alkylative annulation failed. This protocol provides a novel and expeditious access to azaindenones and related compounds via cross-dehydrogenative coupling with the long-standing problem of C2/C4 regioselectivity of pyridines being well addressed.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Xiao Q, Lu M, Deng Y, Jian JX, Tong QX, Zhong JJ. Photoinduced Radical Cascade Cyclization: A Metal-Free Approach to Access Difluoroalkylated Dioxodibenzothiazepines. Org Lett 2021; 23:9303-9308. [PMID: 34806891 DOI: 10.1021/acs.orglett.1c03700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and mild photoredox catalytic approach to access difluoroalkylated dioxodibenzothiazepines in high regioselectivity via radical cascade cyclization has been described herein. In contrast to previous methods, this strategy does not involve the use of transition-metal catalysts and avoids the potential disadvantages of inevitable toxicity and the tedious removal process of metal catalysts. The commercially available and inexpensive CF2 precursors, wide substrate scope, and mild reaction conditions demonstrate the practicability of this approach.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Maojian Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Yinglan Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
20
|
Xu H, Zhang H, Tong QX, Zhong JJ. Photoredox/cobaloxime co-catalyzed allylation of amines and sulfonyl hydrazines with olefins to access α-allylic amines and allylic sulfones. Org Biomol Chem 2021; 19:8227-8231. [PMID: 34337641 DOI: 10.1039/d1ob01307f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a dual-catalytic platform for the allylation of amines and sulfonyl hydrazines with olefins to selectively access α-allylic amines and allylic sulfones in good yields by combining photoredox catalysis and cobaloxime catalysis. This strategy avoided the use of a stoichiometric amount of terminal oxidant and the use of pre-functionalized allylic precursors, representing a green and ideal atom- & step-economical process. Good substrate scope and gram-scale synthesis demonstrated the utility of this protocol. Mechanistic studies revealed that a radical process is probably involved in this reaction.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Hong Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| |
Collapse
|
21
|
Shi J, Gao XW, Tong QX, Zhong JJ. Light-Promoted and Tertiary-Amine-Assisted Hydroxysulfenylation of Alkenes: Selective and Direct One-Pot Synthesis of β-Hydroxysulfides. J Org Chem 2021; 86:12922-12931. [PMID: 34464115 DOI: 10.1021/acs.joc.1c01610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A light-promoted and tertiary-amine-assisted strategy for efficient hydroxysulfenylation of both electron-rich and electron-deficient alkenes with thiophenols to selectively and directly access β-hydroxysulfides in one pot is described herein. In contrast to the previously reported thiol-oxygen co-oxidation reactions, this simple and sustainable approach features mild reaction conditions, high efficiency, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Jing Shi
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Xue-Wang Gao
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
22
|
Qu C, Song G, Ou J, Tang D, Xu Z, Chen Z. Visible
Light‐Mediated
Construction of Sulfonated Dibenzazepines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuan‐Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Gui‐Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Jian‐Hua Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Dian‐Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhi‐Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhong‐Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| |
Collapse
|
23
|
Xiao Q, Zhang H, Li JH, Jian JX, Tong QX, Zhong JJ. Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis. Org Lett 2021; 23:3604-3609. [PMID: 33843237 DOI: 10.1021/acs.orglett.1c00999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast with the well-developed radical thiol-ene reaction to access anti-Markovnikov-type products, the research on the catalytic Markovnikov-selective hydrothiolation of alkenes is very restricted. Because of the catalyst poisoning of metal catalysts by organosulfur compounds, limited examples of transition-metal-catalyzed thiol-ene reactions have been reported. However, in this work, a directing-group-assisted hydrothiolation of styrenes with thiols by photoredox/cobalt catalysis is found to proceed smoothly to afford Markovnikov-type sulfides with excellent regioselectivity.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Hong Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Hong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
24
|
Chen N, Xu HC. Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. CHEM REC 2021; 21:2306-2319. [PMID: 33734572 DOI: 10.1002/tcr.202100048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Organic radicals are versatile synthetic intermediates that provide reactivities and selectivities complementary to ionic species. Despite its long history, electrochemically driven radical reactions remain limited in scope. In the past few years, there have been dramatic increase in research activity in organic electrochemistry. We have been developing electrochemical and electrophotocatalytic methods for the generation and synthetic utilization of organic radicals. In our studies, various radical species such as alkene and arene radical cations and carbon- and heteroatom-centered radicals are generated from readily available precursors through direct electrolysis, molecular electrocatalysis or molecular electrophotocatalysis. These radical species undergo various inter- and intramolecular oxidative transformations to rapidly increase molecular complexity. The simultaneous occurrence of anodic oxidation and cathodic proton reduction allows the oxidative reactions to proceed through H2 evolution without external chemical oxidants.
Collapse
Affiliation(s)
- Na Chen
- School of Medicine, Huaqiao University, Xiamen, 361021, China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
25
|
Zhang ZQ, Xu YH, Dai JC, Li Y, Sheng J, Wang XS. Copper-Catalyzed Trifluoromethylation/Cyclization of Alkynes for Synthesis of Dioxodibenzothiazepines. Org Lett 2021; 23:2194-2198. [PMID: 33635668 DOI: 10.1021/acs.orglett.1c00344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A facile and efficient approach for the synthesis of the CF3-containing dioxodibenzothiazepines has been developed via copper-catalyzed trifluoromethylation/cyclization of alkynes utilizing a radical relay strategy. This method has demonstrated low catalyst loading, high regiocontrol, and broad scope under mild conditions. Good compatibility for the N-protecting group, gram-scale experiment, and further derivation of product prove the versatility of this transformation.
Collapse
Affiliation(s)
- Zi-Qi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yi-Hao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing-Cheng Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
27
|
Wang X, Lei J, Liu Y, Ye Y, Li J, Sun K. Fluorination and fluoroalkylation of alkenes/alkynes to construct fluoro-containing heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01629b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarize the established strategies through fluorination and fluoroalkylation of alkenes/alkynes for constructing fluoro-containing heterocycles. Reaction scopes, mechanisms and some shortcomings are also discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Jia Lei
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yingjie Liu
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yong Ye
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jiazhu Li
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| |
Collapse
|
28
|
Sheng X, Xu Q, Lin Z, Hu Z, Pan L, Liu Q, Li Y. External Reductant‐free Stepwise [3+2] Cycloaddition/Reductive Cyclization from 2‐Nitrochalcones and Isocyanides: Synthesis of Pyrrolo[3,4‐
c
]quinoline
N
‐oxides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyao Sheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ziwen Lin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhongyan Hu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
29
|
Chen Z, Jin W, Xia Y, Zhang Y, Xie M, Ma S, Liu C. Aminothiolation of α-Bromocinnamaldehydes to Access Imidazo[2,1-b]thiazoles by Incorporation of Two Distinct Photoinduced Processes. Org Lett 2020; 22:8261-8266. [DOI: 10.1021/acs.orglett.0c02907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Mengwei Xie
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Shangchao Ma
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, College of Chemistry, Xinjiang University, Urumqi 830046, P.R. China
| |
Collapse
|
30
|
Zhang H, Xiao Q, Qi XK, Gao XW, Tong QX, Zhong JJ. Selective photoredox decarboxylation of α-ketoacids to allylic ketones and 1,4-dicarbonyl compounds dependent on cobaloxime catalysis. Chem Commun (Camb) 2020; 56:12530-12533. [DOI: 10.1039/d0cc05580h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The selective synthesis of allylic ketones and 1,4-dicarbonyl compounds by photoredox/cobaloxime co-catalysis and photoredox catalysis, respectively, is described herein.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Qian Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Xu-Kuan Qi
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University, and Chemistry and Chemical Engineering Laboratory of Guangdong Province
- Guangdong 515063
- P. R. China
| |
Collapse
|
31
|
Lu M, Lin Z, Chen S, Chen H, Huang M, Cai S. Visible-Light-Enabled Oxidative Coupling of Alkenes with Dialkylformamides To Access Unsaturated Amides. Org Lett 2019; 21:9929-9933. [PMID: 31808698 DOI: 10.1021/acs.orglett.9b03870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and direct method for oxidative cross-coupling of alkenes with dialkylformamides is established employing visible-light-enabled photoredox catalysis. This strategy allows efficient access to diverse unsaturated amides under mild reaction conditions. The application of an appropriate diaryliodonium salt was demonstrated to be critical to the success of this process. This catalyst system is well tolerant of a variety of useful functional groups.
Collapse
Affiliation(s)
- Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Shanyi Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Hongyou Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School , Peking University , Shenzhen 518055 , China
| |
Collapse
|