1
|
Barba‐Bon A, Gumerova NI, Tanuhadi E, Ashjari M, Chen Y, Rompel A, Nau WM. All-Inorganic Polyoxometalates Act as Superchaotropic Membrane Carriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309219. [PMID: 37943506 PMCID: PMC11475408 DOI: 10.1002/adma.202309219] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are known antitumoral, antibacterial, antiviral, and anticancer agents and considered as next-generation metallodrugs. Herein, a new biological functionality in neutral physiological media, where selected mixed-metal POMs are sufficiently stable and able to affect membrane transport of impermeable, hydrophilic, and cationic peptides (heptaarginine, heptalysine, protamine, and polyarginine) is reported. The uptake is observed in both, model membranes as well as cells, and attributed to the superchaotropic properties of the polyoxoanions. In view of the structural diversity of POMs these findings pave the way toward their biomedical application in drug delivery or for cell-biological uptake studies with biological effector molecules or staining agents.
Collapse
Affiliation(s)
- Andrea Barba‐Bon
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Nadiia I. Gumerova
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Elias Tanuhadi
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Maryam Ashjari
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Yao Chen
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Werner M. Nau
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
2
|
Khlifi S, Yao S, Falaise C, Bauduin P, Guérineau V, Leclerc N, Haouas M, Salmi-Mani H, Roger P, Cadot E. Switchable Redox and Thermo-Responsive Supramolecular Polymers Based on Cyclodextrin-Polyoxometalate Tandem. Chemistry 2023:e202303815. [PMID: 38146753 DOI: 10.1002/chem.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Supramolecular polymers built from stimuli-responsive host-guest interactions represent an attractive way of tailoring smart materials. Herein, we exploit the chaotropic effect of polyoxometalates and related host-guest properties to design unconventional polymer systems with reversible redox and thermo-responsive sol-gel transition. These supramolecular networks result from the association of cyclodextrin-based oligomers and Keggin-type POMs acting as electro-active crosslinking agents. The structure and the dynamics of such self-assembly systems have been investigated using a multiscale approach involving MALDI-TOF, viscosity measurements, cyclic voltammetry, 1 H-NMR (1D and DOSY), and Small-Angle X-ray Scattering. Our results reveal that the chaotropic effect corresponds to a powerful and efficient force that can be used to induce responsiveness in hybrid supramolecular oligomeric systems.
Collapse
Affiliation(s)
- Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Sa Yao
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, CNRS UMR 5257, CEA, Université de Marcoule, ENSCM, F-30207, Bagnols sur Cèze Cedex, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Hanene Salmi-Mani
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| |
Collapse
|
3
|
Haouas M, Falaise C, Leclerc N, Floquet S, Cadot E. NMR spectroscopy to study cyclodextrin-based host-guest assemblies with polynuclear clusters. Dalton Trans 2023; 52:13467-13481. [PMID: 37691564 DOI: 10.1039/d3dt02367b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural cyclodextrin (CD) macrocycles are known to form diverse inclusion complexes with a wide variety of organic molecules, but recent work has revealed that inorganic clusters also form multicomponent supramolecular complexes and edifices. Such molecular assemblies exhibit a high degree of organization in solution governed by various chemical processes including molecular recognition, host-guest attraction, hydrophobic repulsion, or chaotropic effect. Nuclear magnetic resonance (NMR) spectroscopy is one of the most efficient and practical analytical techniques to characterize the nature, the strength and the mechanism of these interactions in solution. This review provides a brief overview on recent examples of the contribution of NMR to the characterization of hybrid systems in solution based on CD with polynuclear clusters, including polyoxometalates (POMs), metallic clusters and hydroborate clusters. The focus will be first on using 1H (and 13C) NMR of the host, i.e., CD, to identify the nature of the interactions and measure their strength. Then, 2D NMR methods will be illustrated by DOSY as a means of highlighting the clustering phenomena, and by NOESY/ROESY to evidence the spatial proximity and contact within the supramolecular assemblies. Finally, other NMR nuclei will be selected to probe the inorganic part as a guest molecule. Attention will be paid to classical host-guest complexes Cluster@CD, but also to hierarchical multi-scale, multi-component assemblies such as Cluster@CD@Cluster.
Collapse
Affiliation(s)
- Mohamed Haouas
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Clément Falaise
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Sébastien Floquet
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (ILV), Université Paris-Saclay, UVSQ, CNRS, 45 avenue des Etats-Unis, 78000, Versailles, France.
| |
Collapse
|
4
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
5
|
Chen Y, Barba-Bon A, Grüner B, Winterhalter M, Aksoyoglu MA, Pangeni S, Ashjari M, Brix K, Salluce G, Folgar-Cameán Y, Montenegro J, Nau WM. Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides. J Am Chem Soc 2023; 145:13089-13098. [PMID: 37265356 PMCID: PMC10288510 DOI: 10.1021/jacs.3c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
Collapse
Affiliation(s)
- Yao Chen
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Andrea Barba-Bon
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Bohumir Grüner
- Institute
of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | | | - M. Alphan Aksoyoglu
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Sushil Pangeni
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Maryam Ashjari
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Klaudia Brix
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Giulia Salluce
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Werner M. Nau
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
6
|
Hamaguchi T, Ishikawa R, Mishima A, Hayami S, Ohba M, Satoh M, Kawata S. The structure and modified properties of a self-dimerised Cu(II) inclusion complex in γ-cyclodextrins. Dalton Trans 2023; 52:4475-4480. [PMID: 36919758 DOI: 10.1039/d3dt00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Inclusion structures incorporating more than one guest molecule are elusive because confinement alters their molecular properties. We report the solid-state characterization of an inclusion complex comprising two γ-cyclodextrins and two [Cu(2-pyridinemethanolate)(2-pyridinemethanol)]PF6 units. Quantum calculation reveals that interfragment charge transfer occurs. The confined Cu fragment and the unincluded "linear chain [Cu(2-pyridinemethanolate)(2-pyridinemethanol)]PF6" exhibit different properties.
Collapse
Affiliation(s)
- Tomohiko Hamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ryuta Ishikawa
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Akio Mishima
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.,Institute of Pulsed Power Science, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Minoru Satoh
- Department of Industrial Engineering, National Institute of Technology (KOSEN), Ibaraki College, 866 Nakane, Hitachinaka-shi, Ibaraki-ken 312-8508, Japan
| | - Satoshi Kawata
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
7
|
Braun L, Hohenschutz M, Diat O, von Klitzing R, Bauduin P. Repulsive, but sticky - Insights into the non-ionic foam stabilization mechanism by superchaotropic nano-ions. J Colloid Interface Sci 2023; 641:437-448. [PMID: 36948099 DOI: 10.1016/j.jcis.2023.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
HYPOTHESIS The superchaotropic Keggin polyoxometalate α-SiW12O404- (SiW) was recently shown to stabilize non-ionic surfactant (C18:1E10) foams owing to electrostatic repulsion that arises from the adsorption of SiW-ions to the foam interfaces. The precise mechanism of foam stabilization by SiW however remained unsolved. EXPERIMENTS Imaging and conductimetry were used on macroscopic foams to monitor the foam collapse under free drainage and small angle neutron scattering (SANS) at a given foam height allowed for the tracking of the evolution of film thickness under quasi-stationary conditions. Thin film pressure balance (TFPB) measurements enabled to quantify the resistance of single foam films to external pressure and to identify intra-film forces. FINDINGS At low SiW/surfactant ratios, the adsorption of SiW induces electrostatic repulsion within foam films. Above a concentration threshold corresponding to an adsorption saturation, excess of SiW screens the electrostatic repulsion that leads to thinner foam films. Despite screened electrostatics, the foam and single foam films remain very stable caused by an additional steric stabilizing force consistent with the presence of trapped micelles inside the foam films that bridge between the interfaces. These trapped micelles can serve as a surfactant reservoir, which promotes self-healing of the interface leading to much more resilient foam films in comparison to bare surfactant foams/films.
Collapse
Affiliation(s)
- Larissa Braun
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hohenschutz
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France; RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France.
| |
Collapse
|
8
|
Supramolecular Host–Guest Assemblies of [M6Cl14]2–, M = Mo, W, Clusters with γ-Cyclodextrin for the Development of CLUSPOMs. INORGANICS 2023. [DOI: 10.3390/inorganics11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Host–guest assemblies open up opportunities for developing novel functional CLUSPOM multicomponent systems based on transition metal clusters (CLUS), polyoxometalates (POMs) and macrocyclic organic ligands. In water–ethanol solution γ-cyclodextrin (γ-CD) interacts with halide metal clusters [M6Cl14]2– (M = Mo, W) to form sandwich-type structures. The supramolecular association between the clusters and CDs, however, remains weak in solution, and the interactions are not strong enough to prevent the hydrolysis of the inorganic guest. Although analysis of the resulting crystal structures reveals inclusion complexation, 1H NMR experiments in solution show no specific affinity between the two components. The luminescent properties of the host–guest compounds in comparison with the initial cluster complexes are also studied to evaluate the influence of CD.
Collapse
|
9
|
Ivanov AA, Haouas M, Evtushok DV, Pozmogova TN, Golubeva TS, Molard Y, Cordier S, Falaise C, Cadot E, Shestopalov MA. Stabilization of Octahedral Metal Halide Clusters by Host-Guest Complexation with γ-Cyclodextrin: Toward Nontoxic Luminescent Compounds. Inorg Chem 2022; 61:14462-14469. [PMID: 36041168 DOI: 10.1021/acs.inorgchem.2c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γ-Cyclodextrin (γ-CD) interacts in aqueous solution with octahedral halide clusters Na2[{M6X8}Cl6] (M = Mo, W; X = Br, I) to form robust inclusion supramolecular complexes [{M6X8}Cl6@2γ-CD]2-. Single-crystal X-ray diffraction analyses revealed two conformational organizations within the adduct depending on the nature of the inner halide X within the {M6X8} core. Using 35Cl NMR and UV-vis as complementary techniques, the kinetics of the hydrolysis process were shown to increase with the following order: {W6I8} < {W6Br8} ≈ {Mo6I8} < {Mo6Br8}. The complexation with γ-CD drastically enhances the hydrolytic stability of luminescent [{M6X8}Cl6]2- cluster-based units, which was quantitatively proved by the same techniques. The resulting host-guest complexation provides a protective shell against contact with water and offers promising horizons for octahedral clusters in biology as revealed by the low dark cytotoxicity and cellular uptake.
Collapse
Affiliation(s)
- Anton A Ivanov
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France.,Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Darya V Evtushok
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana N Pozmogova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Tatiana S Golubeva
- Novosibirsk State University, Novosibirsk 630090, Russia.,Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Yann Molard
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France
| | | |
Collapse
|
10
|
Water-Soluble Chalcogenide W 6-Clusters: On the Way to Biomedical Applications. Int J Mol Sci 2022; 23:ijms23158734. [PMID: 35955875 PMCID: PMC9369320 DOI: 10.3390/ijms23158734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the great potential of octahedral tungsten cluster complexes in fields of biomedical applications such as X-ray computed tomography or angiography, there is only one example of a water-soluble W6Q8-cluster that has been reported in the literature. Herein we present the synthesis and a detailed characterization including X-ray structural analysis, NMR, IR, UV-Vis spectroscopies, HR-MS spectrometry, and the electrochemical behavior of two new cluster complexes of the general formula W6Q8L6 with phosphine ligands containing a hydrophilic carboxylic group, which makes the complexes soluble in an aqueous medium. The hydrolytic stability of the clusters' aqueous solutions allows us to investigate for the first time the influence of W6-clusters on cell viability. The results obtained clearly demonstrate their very low cytotoxicity, comparable to the least-toxic clusters presented in the literature.
Collapse
|
11
|
Casimiro A, Lugger J, Lub J, Nijmeijer K. Non-Globular Organic Ionic Plastic Crystal Containing a Crown-Ether Moiety - Tuning Its Behaviour Using Sodium Salts. Chemphyschem 2022; 23:e202200258. [PMID: 35561265 PMCID: PMC9400962 DOI: 10.1002/cphc.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Organic ionic plastic crystals (OIPCs) are a class of soft materials showing positional order while still allowing orientational freedom. Due to their motional freedom in the solid state, they possess plasticity, non-flammability and high ionic conductivity. OIPC behavior is typically exhibited by 'simple' globular molecules allowing molecular rotation, whereas the interactions that govern the formation of OIPC phases in complex non-globular molecules are less understood. To better understand these interactions, a new family of non-globular OIPCs containing a 15-crown-5 ether moiety was synthetized and characterized. The 15C5BA molecule prepared does not exhibit the sought-after behavior because of its non-globular nature and strong intermolecular H-bonds that restrict orientational motion. However, the OIPC behavior was successfully obtained through complexation of the crown-ether moiety with sodium salts containing chaotropic anions. Those anions weaken the interactions between the molecules, allowing rotational freedom and tuning of the thermal and morphological properties of the OIPC.
Collapse
Affiliation(s)
- Anna Casimiro
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jody Lugger
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Johan Lub
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
12
|
Fa Bamba I, Falaise C, Marrot J, Atheba P, Gbassi G, Landy D, Shepard W, Haouas M, Cadot E. Host-Guest Complexation Between Cyclodextrins and Hybrid Hexavanadates: What are the Driving Forces? Chemistry 2021; 27:15516-15527. [PMID: 34523167 DOI: 10.1002/chem.202102684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/12/2022]
Abstract
Host-guest complexes between native cyclodextrins (α-, β- and γ-CD) and hybrid Lindqvist-type polyoxovanadates (POVs) [V6 O13 ((OCH2 )3 C-R)2 ]2- with R = CH2 CH3 , NO2 , CH2 OH and NH(BOC) (BOC = N-tert-butoxycarbonyl) were studied in aqueous solution. Six crystal structures determined by single-crystal X-ray diffraction analysis revealed the nature of the functional R group strongly influences the host-guest conformation and also the crystal packing. In all systems isolated in the solid-state, the organic groups R are embedded within the cyclodextrin cavities, involving only a few weak supramolecular contacts. The interaction between hybrid POVs and the macrocyclic organic hosts have been deeply studied in solution using ITC, cyclic voltammetry and NMR methods (1D 1 H NMR, and 2D DOSY, and ROESY). This set of complementary techniques provides clear insights about the strength of interactions and the binding host-guest modes occurring in aqueous solution, highlighting a dramatic influence of the functional group R on the supramolecular properties of the hexavanadate polyoxoanions (association constant K1:1 vary from 0 to 2 000 M-1 ) while isolated functional organic groups exhibit only very weak intrinsic affinity with CDs. Electrochemical and calorimetric investigations suggest that the driving force of the host-guest association involving larger CDs (β- and γ-CD) is mainly related to the chaotropic effect. In contrast, the hydrophobic effect supported by weak attractive forces appears as the main contributor for the formation of α-CD-containing host-guest complexes. In any cases, the origin of driving forces is clearly related to the ability of the macrocyclic host to desolvate the exposed moieties of the hybrid POVs.
Collapse
Affiliation(s)
- Ibrahima Fa Bamba
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France.,UFR Sciences Pharmaceutiques et Biologiques (UFR SPB), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Patrick Atheba
- UFR Sciences des Structures de la Matière et Technologie (UFR SSMT), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - Gildas Gbassi
- UFR Sciences Pharmaceutiques et Biologiques (UFR SPB), Université Félix Houphouet Boigny (UFHB), Abidjan, Côte d'Ivoire
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant, ULCO, Dunkerque, UR 4492, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubain BP 48, 91192 Gif-sur-Yvette, CEDEX, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|
13
|
Kojima T, Takeda H, Kuwamura N, Konno T. A Pseudorotaxane System Containing γ-Cyclodextrin Formed via Chiral Recognition with an Au I 6 Ag I 3 Cu II 3 Molecular Cap. Chemistry 2021; 27:15981-15985. [PMID: 34436804 DOI: 10.1002/chem.202102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Solvent-mediated crystal-to-crystal transformations of [Au6 Ag3 Cu3 (H2 O)3 (d-pen)6 (tdme)2 ]3+ (d-[1(H2 O)3 ]3+ ; pen2- =penicillaminate, tdme=1,1,1-tris(diphenylphosphinomethyl)ethane) to form unique supramolecular species are reported. Soaking crystals of d-[1(H2 O)3 ]3+ in aqueous Na2 bdc (bdc2- =1,4-benzenedicarboxylate) yielded crystals containing d-[1(bdc)(H2 O)2 ]+ due to the replacement of a terminal aqua ligand in d-[1(H2 O)3 ]3+ by a monodentate bdc2- ligand. When γ-cyclodextrin (γ-CD) was added to aqueous Na2 bdc, d-[1(H2 O)3 ]3+ was transformed to d-[1(bdc@γ-CD)(H2 O)2 ]+ , where a γ-CD ring was threaded by a bdc2- molecule to construct a pseudorotaxane structure. While the use of dicarboxylates with an aliphatic carbon chain instead of bdc2- afforded analogous pseudorotaxanes, such pseudorotaxane species were not formed when crystals of [Au6 Ag3 Cu3 (H2 O)3 (l-pen)6 (tdme)2 ]3+ (l-[1(H2 O)3 ]3+ ) enantiomeric to d-[1(H2 O)3 ]3+ were soaked in aqueous Na2 bdc and γ-CD, affording only crystals containing l-[1(bdc)(H2 O)2 ]+ .
Collapse
Affiliation(s)
- Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Takeda
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
14
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Shepard W, Ivanov AA, Sokolov MN, Shestopalov MA, Abramov PA, Cordier S, Marrot J, Haouas M, Cadot E. “Host in Host” Supramolecular Core–Shell Type Systems Based on Giant Ring‐Shaped Polyoxometalates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Pierre Bauduin
- ICSM, CEA CNRS ENSCM Université Montpellier 34199 Marcoule France
| | - Philipp Schmid
- ICSM, CEA CNRS ENSCM Université Montpellier 34199 Marcoule France
| | - William Shepard
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubain BP 48 91192 Gif-sur-Yvette, CEDEX France
| | - Anton A. Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
| | | | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
- South Ural State University, Prospekt Lenina, 76 454080 Chelyabinsk Russia
| | - Stéphane Cordier
- CNRS Institut des Sciences Chimiques de Rennes ISCR—UMR 6226 Univ Rennes 35000 Rennes France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles CNRS, UVSQ, Université Paris-Saclay Versailles France
| |
Collapse
|
15
|
|
16
|
Falaise C, Khlifi S, Bauduin P, Schmid P, Shepard W, Ivanov AA, Sokolov MN, Shestopalov MA, Abramov PA, Cordier S, Marrot J, Haouas M, Cadot E. "Host in Host" Supramolecular Core-Shell Type Systems Based on Giant Ring-Shaped Polyoxometalates. Angew Chem Int Ed Engl 2021; 60:14146-14153. [PMID: 33724635 DOI: 10.1002/anie.202102507] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/08/2022]
Abstract
Herein, we show how the chaotropic effect arising from reduced molybdate ions in acidified aqueous solution is able to amplify drastically weak supramolecular interactions. Time-resolved Small Angle X-ray Scattering (SAXS) analysis suggests that molybdenum-blue oligomeric species form huge aggregates in the presence of γ-cyclodextrin (γ-CD) which results in the fast formation of nanoscopic {Mo154 }-based host-guest species, while X-ray diffraction analysis reveals that the ending-point of the scenario results in an unprecedented three-component well-ordered core-shell-like motif. A similar arrangement was found by using preformed hexarhenium chalcogenide-type cluster [Re6 Te8 (CN)6 ]4- as exogenous guest. This seminal work brings better understanding of the self-assembly processes in general and gives new opportunities for practical applications in the design of complex multicomponent materials via the simplicity of the non-covalent chemistry.
Collapse
Affiliation(s)
- Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, 34199, Marcoule, France
| | - Philipp Schmid
- ICSM, CEA, CNRS, ENSCM, Université Montpellier, 34199, Marcoule, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubain BP 48, 91192, Gif-sur-Yvette, CEDEX, France
| | - Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia
| | | | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090, Novosibirsk, Russia.,South Ural State University, Prospekt Lenina, 76, 454080, Chelyabinsk, Russia
| | - Stéphane Cordier
- CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|
17
|
Yao S, Falaise C, Ivanov AA, Leclerc N, Hohenschutz M, Haouas M, Landy D, Shestopalov MA, Bauduin P, Cadot E. Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00902d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chaotropic character of Keggin-type polyoxotungstate anions was evaluated with respect to their ability to bind to γ-cyclodextrin (γ-CD) by varying the global charge density of the nanometer-sized polyanion.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Clément Falaise
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Anton A. Ivanov
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | | | - Mohamed Haouas
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492)
- ULCO
- Dunkerque
- France
| | | | | | - Emmanuel Cadot
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| |
Collapse
|
18
|
Chen J, Qian K, Xiao K, Luo J, Li H, Ma T, Kortz U, Tsige M, Liu T. Co-ion Effects in the Self-Assembly of Macroions: From Co-ions to Co-macroions and to the Unique Feature of Self-Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10519-10527. [PMID: 32787054 DOI: 10.1021/acs.langmuir.0c01797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Macroions, as soluble ions with a size on the nanometer scale, show unique solution behavior different from those of simple ions and large colloidal suspensions. In macroionic solutions, the counterions are known to be important and well-explored. However, the role of co-ions (ions carrying the same type of charge as the macroions) is often ignored. Here, through experimental and simulation studies, we demonstrate the role of co-ions as a function of co-ion size on their interaction with the macroions (using {Mo72Fe30} and {SrPd12} as models) and the related self-assembly into blackberry-type structures in dilute solutions. Several regimes of unique co-ion effects are clearly identified: small ions (halides, oxoacid ions), subnanometer-scaled bulky ions (lacunary Keggin and dodecaborate ions), and those with sizes comparable to the macroions. Small co-ions have no observable effect on the self-assembly of fully hydrophilic {Mo72Fe30}, while due to hydrophobic interaction and intermolecular hydrogen bonds, the small co-ions show influences on the self-assembly of hydrophobic {SrPd12}. Subnanometer ions, a.k.a. "superchaotropic ions", are still too small to assemble into a blackberry by themselves, but they can coassemble with the macroions, showing a strong interaction with the macroionic system. When the co-ion size is comparable to that of the macroions, they assemble independently instead of assembling with the macroions, leading to the previously reported unique self-recognition phenomenon for macroions.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kun Qian
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kexing Xiao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiancheng Luo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hui Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Tian Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Mesfin Tsige
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
19
|
Konovalov DI, Ivanov AA, Vorotnikov YA, Brylev KA, Eltsov IV, Yanshole VV, Kuratieva NV, Kitamura N, Shestopalov MA. Apically homoleptic octahedral rhenium cluster complexes with 3-methylpyrazole. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Ivanov AA, Falaise C, Shmakova AA, Leclerc N, Cordier S, Molard Y, Mironov YV, Shestopalov MA, Abramov PA, Sokolov MN, Haouas M, Cadot E. Cyclodextrin-Assisted Hierarchical Aggregation of Dawson-type Polyoxometalate in the Presence of {Re 6Se 8} Based Clusters. Inorg Chem 2020; 59:11396-11406. [PMID: 32706590 DOI: 10.1021/acs.inorgchem.0c01160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The association of metallic clusters (CLUS) and polyoxometalates (POM) into hierarchical architectures is achieved using γ-cyclodextrin (γ-CD) as a supramolecular connector. The new self-assembled systems, so-called CLUSPOM, are formed from Dawson-type polyoxometalate [P2W18O62]6- and electron-rich rhenium clusters. It is worth noting that a cluster-based cation [{Re6Se8}(H2O)6]2+ on one hand and a cluster-based anion on the other hand [{Re6Se8}(CN)6]4- can be associated with the anionic POM. In the absence of the supramolecular connector, a "CLUSPOM salt" was obtained from aqueous solution of the cationic cluster and the polyoxometalate. In this solid, the arrangement between the polymetallic building blocks is mainly governed by long-range Coulombic interactions. In the presence of γ-CD, the Dawson anion and the cationic cluster are assembled differently, forming a hierarchical supramolecular solid, K2[{Re6Se8}(H2O)6]2{[P2W18O62]@2γ-CD}·42H2O, where the organic macrocycle acts as a ditopic linker between the inorganic building blocks. In such an edifice, the short-range molecular recognition dominates the long-range Coulombic interactions leading to a specific three-dimensional organization. Interestingly, the assembling of anionic POM [P2W18O62]6- with the anionic rhenium cluster [{Re6Se8}(CN)6]4- is also achieved with γ-CD despite the repulsive forces between the nanosized anions. The resulting solid, K10{[{Re6Se8}(CN)6]@2γ-CD}[P2W18O62]·33H2O, is built from 1:2 inclusion complexes {[{Re6Se8}(CN)6]@2γ-CD}4- linked by a POM unit interacting with the exterior wall of the organic macrocycle. Multinuclear NMR and small-angle X-ray scattering investigations support supramolecular preorganization in aqueous solution prior to crystallization.
Collapse
Affiliation(s)
- Anton A Ivanov
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France.,Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Clément Falaise
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Alexandra A Shmakova
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France.,Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Stéphane Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Yann Molard
- Université de Rennes, CNRS, ISCR - UMR 6226, ScanMAT - UMS 2001, F-35000 Rennes, France
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | | | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia.,South Ural State University, Prospekt Lenina, 76, Chelyabinsk, Russia, 454080
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| |
Collapse
|
21
|
Assaf KI, Holub J, Bernhardt E, Oliva‐Enrich JM, Fernández Pérez MI, Canle M, Santaballa JA, Fanfrlík J, Hnyk D, Nau WM. Face-Fusion of Icosahedral Boron Hydride Increases Affinity to γ-Cyclodextrin: closo,closo-[B 21 H 18 ] - as an Anion with Very Low Free Energy of Dehydration. Chemphyschem 2020; 21:971-976. [PMID: 32163219 PMCID: PMC7318346 DOI: 10.1002/cphc.201901225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/08/2020] [Indexed: 01/05/2023]
Abstract
The supramolecular recognition of closo,closo-[B21 H18 ]- by cyclodextrins (CDs) has been studied in aqueous solution by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. These solution studies follow up on previous mass-spectrometric measurements and computations, which indicated the formation and stability of CD ⋅ B21 H18- complexes in the gas phase. The thermodynamic signature of solution-phase binding is exceptional, the association constant for the γ-CD complex with B21 H18- reaches 1.8×106 M-1 , which is on the same order of magnitude as the so far highest observed value for the complex between γ-CD and a metallacarborane. The nature of the intermolecular interaction is also examined by quantum-mechanical computational protocols. These suggest that the desolvation penalty, which is particularly low for the B21 H18- anion, is the decisive factor for its high binding strength. The results further suggest that the elliptical macropolyhedral boron hydride is another example of a CD binder, whose extraordinary binding affinity is driven by the chaotropic effect, which describes the intrinsic affinity of large polarizable and weakly solvated chaotropic anions to hydrophobic cavities and surfaces in aqueous solution.
Collapse
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
- Department of ChemistryAl-Balqa Applied University19117Al-SaltJordan
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences25068Husinec-ŘežCzech Republic
| | - Eduard Bernhardt
- Bergische University WuppertalGaussstrasse 2042097WuppertalGermany
| | | | - M. Isabel Fernández Pérez
- Departamento de QuímicaFacultade de Ciencias and CICAZapateiraUniversidade da Coruña Grupo de Reactividade Química e Fotorreactividade (REACT!) ESP-15071CoruñaSpain
| | - Moisés Canle
- Departamento de QuímicaFacultade de Ciencias and CICAZapateiraUniversidade da Coruña Grupo de Reactividade Química e Fotorreactividade (REACT!) ESP-15071CoruñaSpain
| | - J. Arturo Santaballa
- Departamento de QuímicaFacultade de Ciencias and CICAZapateiraUniversidade da Coruña Grupo de Reactividade Química e Fotorreactividade (REACT!) ESP-15071CoruñaSpain
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nam. 216610PragueCzech Republic
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry of the Czech Academy of Sciences25068Husinec-ŘežCzech Republic
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| |
Collapse
|
22
|
Matějíček P. Erratic ions: self-assembly and coassembly of ions of nanometer size and of irregular structure. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|