1
|
Chaudhary SP, Bhattacharyya S. Positive Feedback Mechanism of Probe Sonication for the Perovskite Films in Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50479-50488. [PMID: 37862132 DOI: 10.1021/acsami.3c09651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The performance of perovskite solar cells (PSCs) is governed by the quality of perovskite films, whereby compact, pinhole-free perovskite films are desired, in addition to its composition. We have demonstrated probe sonication as a processing technique to provide positive feedback for enhancing the perovskite film quality and photovoltaic parameters, with two systems, CH3NH3PbI3 (MAPbI3) and Cs0.17FA0.83Pb(I0.83Br0.17)3. In probe sonication, the ultrasound results in the formation, growth, and collapse of the bubbles through shock wave inside the gas phase of the collapsing bubble. This phenomenon has a chemical impact on the nucleation of the perovskite phases and interconnectivity of the grains. The 60 min sonicated films with stronger hydrogen bonding network are devoid of unwanted Pb0, δ-FAPbI3, and PbI2 phases, having tightly packed homogeneous grains, minimum electron-hole recombination pathways, and improved light absorption. The surface potential remains mostly unaltered across the grains and grain boundaries, and the realignment of the Fermi energy (EF) favors facile carrier transport. The photoconversion efficiency (PCE) of the MAPbI3 and Cs0.17FA0.83Pb(I0.83Br0.17)3 devices is improved by 28.1 and 17.2% in comparison to the pristine perovskites, respectively. The 60 min sonicated Cs0.17FA0.83Pb(I0.83Br0.17)3 PSC has 20.20 ± 0.40% PCE with 1000 h ambient stability having >60% retention of the original PCE.
Collapse
Affiliation(s)
- Sonu Pratap Chaudhary
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Kumar D, Bansal NK, Dixit H, Kulkarni A, Singh T. Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dinesh Kumar
- Functional Materials and Device Laboratory School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Nitin Kumar Bansal
- Functional Materials and Device Laboratory School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Himanshu Dixit
- Functional Materials and Device Laboratory School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Ashish Kulkarni
- IEK‐5 Photovoltaik Forschungszentrum Jülich Wilhelm‐Johnen‐Straße 52428 Jülich Germany
| | - Trilok Singh
- Functional Materials and Device Laboratory School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
3
|
Ueno H, Kitabatake D, Lin HS, Ma Y, Jeon I, Izawa S, Hiramoto M, Misaizu F, Maruyama S, Matsuo Y. Synthesis of neutral Li-endohedral PCBM: an n-dopant for fullerene derivatives. Chem Commun (Camb) 2022; 58:10190-10193. [PMID: 36000312 DOI: 10.1039/d2cc03678a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Li@PCBM, the first neutral Li@C60 derivative, was synthesized. The Li@PCBM exists in a monomer-dimer equilibrium in solution but as a monomer in the PCBM matrix. The fully dispersed Li@PCBM n-doped the surrounding empty PCBM, raising the Fermi level by 0.13 eV compared with the undoped PCBM film. The hybrid films were utilized as an ETL for PSCs, promoting the efficiency of the device.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Creative Interdisciplinary Research Division, The Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Daiki Kitabatake
- Creative Interdisciplinary Research Division, The Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Hao-Sheng Lin
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yue Ma
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Il Jeon
- Department of Nano Engineering, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seiichiro Izawa
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masahiro Hiramoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Shigeo Maruyama
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaka Matsuo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
4
|
Storing and Releasing Mg by C12 Carbon Ring. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Sumi N, Kuklin AV, Ueno H, Okada H, Ogawa T, Kawachi K, Kasama Y, Sasaki M, Avramov PV, Ågren H, Yamada Y. Direct Visualization of Nearly Free Electron States Formed by Superatom Molecular Orbitals in a Li@C 60 Monolayer. J Phys Chem Lett 2021; 12:7812-7817. [PMID: 34378392 DOI: 10.1021/acs.jpclett.1c02246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we directly determine the spatial and energetic distributions of superatom molecular orbitals (SAMOs) of an Li@C60 monolayer adsorbed on a Cu(111) surface. Utilizing a weakly bonded [Li+@C60] NTf2- (NTf2-: bis(trifluoromethanesulfonyl)imide) salt makes it possible to produce a Li@C60 monolayer with high concentration of Li@C60 molecules. Because of the very uniform adsorption geometry of Li@C60 on Cu(111), the pz-SAMO, populated above the upper hemisphere of the molecule, exhibits an isotropic and delocalized nature, with an energy that is significantly lower compared to that of C60. The isotropic overlapping of pz-SAMOs in the condensed monolayer of Li@C60 results in a laterally homogeneous STM image contributing to the formation of a free-electron-like states. These findings make an important step toward further basic research and applicative utilization of Li@C60 SAMOs.
Collapse
Affiliation(s)
- Naoya Sumi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Artem V Kuklin
- International Research Center of Spectroscopy and Quantum Chemistry (IRC SQC), Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Hiroshi Ueno
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Okada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Idea International Co. Ltd., Sendai, Miyagi 980-8579, Japan
| | - Tomoyuki Ogawa
- Department of Electric Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | - Masahiro Sasaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Tsukuba Research Center for Energy Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Pavel V Avramov
- Department of Chemistry, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Yoichi Yamada
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Material Characterization, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
6
|
Environmentally Compatible Lead-Free Perovskite Solar Cells and Their Potential as Light Harvesters in Energy Storage Systems. NANOMATERIALS 2021; 11:nano11082066. [PMID: 34443897 PMCID: PMC8402099 DOI: 10.3390/nano11082066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Next-generation renewable energy sources and perovskite solar cells have revolutionised photovoltaics research and the photovoltaic industry. However, the presence of toxic lead in perovskite solar cells hampers their commercialisation. Lead-free tin-based perovskite solar cells are a potential alternative solution to this problem; however, numerous technological issues must be addressed before the efficiency and stability of tin-based perovskite solar cells can match those of lead-based perovskite solar cells. This report summarizes the development of lead-free tin-based perovskite solar cells from their conception to the most recent improvements. Further, the methods by which the issue of the oxidation of tin perovskites has been resolved, thereby enhancing the device performance and stability, are discussed in chronological order. In addition, the potential of lead-free tin-based perovskite solar cells in energy storage systems, that is, when they are integrated with batteries, is examined. Finally, we propose a research direction for tin-based perovskite solar cells in the context of battery applications.
Collapse
|
7
|
Yang Y, Cederbaum LS. Endocircular Li Carbon Rings. Angew Chem Int Ed Engl 2021; 60:16649-16654. [PMID: 34003563 PMCID: PMC8361956 DOI: 10.1002/anie.202105222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Indexed: 12/12/2022]
Abstract
By employing accurate state-of-the-art many-electron quantum-chemistry methods, we establish that monocyclic carbon rings can accommodate Li guest atoms. The low-lying electronic states of these endocircular systems are analyzed and found to include both charge-separated states where the guest Li atom appears as a cation and the ring as an anion and encircled-electron states where Li and the ring are neutral. The electron binding energies of the encircled-electron states increase drastically at their highly symmetric equilibrium geometries with increasing size of the ring, and in Li@C24 , this state becomes the ground state. Li is very weakly bound vertical to the rings in the low-lying encircled-electron states, hinting to van-der-Waals binding. Applcations are mentioned.
Collapse
Affiliation(s)
- Yi‐Fan Yang
- Theoretical ChemistryInstitute of Physical ChemistryUniversität HeidelbergIm Neuenheimer Feld 229HeidelbergGermany
| | - Lorenz S. Cederbaum
- Theoretical ChemistryInstitute of Physical ChemistryUniversität HeidelbergIm Neuenheimer Feld 229HeidelbergGermany
| |
Collapse
|
8
|
Yang Y, Cederbaum LS. Endocircular Li Carbon Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi‐Fan Yang
- Theoretical Chemistry Institute of Physical Chemistry Universität Heidelberg Im Neuenheimer Feld 229 Heidelberg Germany
| | - Lorenz S. Cederbaum
- Theoretical Chemistry Institute of Physical Chemistry Universität Heidelberg Im Neuenheimer Feld 229 Heidelberg Germany
| |
Collapse
|
9
|
Matsuo Y. Creation of Highly Efficient and Durable Organic and Perovskite Solar Cells Using Nanocarbon Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yutaka Matsuo
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
10
|
Yang YF, Cederbaum LS. Caged-electron states and split-electron states in the endohedral alkali C 60. Phys Chem Chem Phys 2021; 23:11837-11843. [PMID: 33988191 DOI: 10.1039/d1cp01341f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low-lying electronic states of neutral X@C60 (X = Li, Na, K, Rb) have been computed and analyzed by employing state-of-the-art high level many-electron methods. Apart from the common charge-separated states, well known to be present in endohedral fullerenes, one non-charge-separated state has been found in each of the investigated systems. In Li@C60 and Na@C60, the non-charge-separated state is a caged-electron state already discussed before for Li@C60. This indicates that the application of this low-lying state of Li@C60 discussed before is also applicable for Na@C60. In K@C60 and Rb@C60, the electronic radial distribution analysis shows that this hitherto unknown non-charge-separated state possesses a different nature from that of a caged-electron state.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Li Z, Jiang Y, Wu Y, Wang Z. Activation of the Unreactive Bond in C
70
Fullerene toward Diels‐Alder Reaction by Encapsulation of a Lithium Atom. Chem Asian J 2020; 15:3096-3103. [DOI: 10.1002/asia.202000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Zisheng Li
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yuhang Jiang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yabei Wu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Zhiyong Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| |
Collapse
|
12
|
Xu R, Du Y, Leng D, Liu L, Li Y, Ren X, Fan D, Wang H, Wei Q. Antigen down format photoelectrochemical analysis supported by fullerene functionalized Sn 3O 4. Chem Commun (Camb) 2020; 56:7455-7458. [PMID: 32495763 DOI: 10.1039/d0cc02933e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, a smart competitive-type photoelectrochemical (PEC) sensor based on an antigen-down (Ag-down) format for procalcitonin (PCT) detection is proposed. A fullerene sensitized flower-like Sn3O4 nano-structure is used as the photoactive platform, and FeS2 is labeled on the secondary antibody as a signal adjusting element. The sensor exhibits excellent sensitivity and great stability.
Collapse
Affiliation(s)
- Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao YX, Yuan K, Li MY, Zhao X. Oxidation states of gallium (infrequent i and common iii) tunable via medium-sized C 60 and small-sized C 28 fullerenes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00824a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differently sized fullerenes are shown to be flexible tools for tuning the oxidation states of gallium, and a fluoridation strategy facilitates the further stabilization of Ga@Ih(1812)-C60.
Collapse
Affiliation(s)
- Yao-Xiao Zhao
- Institute for Chemical Physics
- School of Chemistry
- State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Kun Yuan
- Key Laboratory for New Molecule Materials Design and Function of Gansu Universities
- Tianshui Normal University
- Tianshui 741001
- People's Republic of China
| | - Meng-Yang Li
- Institute for Chemical Physics
- School of Chemistry
- State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiang Zhao
- Institute for Chemical Physics
- School of Chemistry
- State Key Laboratory of Electrical Insulation and Power Equipment, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
14
|
Yang YF, Gromov EV, Cederbaum LS. Caged-Electron States in Endohedral Li Fullerenes. J Phys Chem Lett 2019; 10:7617-7622. [PMID: 31755717 DOI: 10.1021/acs.jpclett.9b02934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By employing large-scale high-level EA-EOM-CCSD calculations, we have computed and analyzed the low-lying states of neutral Li@C60. Apart from one state, all states are found to be charge-separated states of the type Li+@C60-. The new state is the first reported non-charge-separated state in endohedral alkali fullerenes. This caged-electron state is analyzed in detail. Arguments are given that in larger highly symmetric endohedral fullerenes the caged-electron state can be the electronic ground state of the system. HF and DFT calculations on Li@C180 indeed find that the caged-electron state is the ground state and that in its equilibrium geometry Li sits at the center of the cage. Applications are mentioned.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| | - Evgeniy V Gromov
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| |
Collapse
|