1
|
Chen Y, Sun SN, Chen XH, Chen ML, Lin JM, Niu Q, Li SL, Liu J, Lan YQ. Predesign of Covalent-Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross-Coupling Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413638. [PMID: 39711245 DOI: 10.1002/adma.202413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/11/2024] [Indexed: 12/24/2024]
Abstract
The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.
Collapse
Affiliation(s)
- Yu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiao-Hong Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ming-Lin Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qian Niu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Dong L, Wang X, Gou Y, Yu S, Yu Z. Photoredox/HAT-Catalyzed Intramolecular Hydrocyclization of Alkenes toward 2,3-Fused Quinazolinones and Dihydroquinazolinones. Org Lett 2024; 26:8756-8761. [PMID: 39356628 DOI: 10.1021/acs.orglett.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
New photochemical approaches to 2,3-fused quinazolinones and dihydroquinazolinones are disclosed. The intramolecular hydrocyclization proceeds in moderate to excellent yields across diverse alkenes with high regioselectivity and diastereocontrol. Mechanistic studies indicated that the radical cascade processes involve thiophenol acting as single-electron transfer and hydrogen atom transfer reagents. The success of the gram-scale synthesis proves the strategy can be used for practical applications.
Collapse
Affiliation(s)
- Li Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Xiaoqing Wang
- College of Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Yanhui Gou
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Shuo Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
3
|
Huang J, Ban C, Qin J, Xu J, Gu Y, Wei L, Yuan JM, Huang G. Visible-light promoted radical cascade cyclization of 3-allyl-2-arylquinazolinones for the synthesis of phosphorylated dihydroisoquinolino[1,2- b]quinazolinones. Chem Commun (Camb) 2024; 60:8119-8122. [PMID: 38995155 DOI: 10.1039/d4cc02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel visible-light promoted metal-free radical cascade cyclization reaction has been developed with 3-allyl-2-arylquinazolinones as a new class of radical acceptor. This photocatalytic protocol represents an efficient approach to construct phosphorylated dihydroisoquinolino[1,2-b]quinazolinones featuring mild conditions, broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Caijin Ban
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiangping Qin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yunqiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Liang Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| |
Collapse
|
4
|
Shetnev A, Kotov A, Kunichkina A, Proskurina I, Baykov S, Korsakov M, Petzer A, Petzer JP. Monoamine oxidase inhibition properties of 2,1-benzisoxazole derivatives. Mol Divers 2024; 28:1009-1021. [PMID: 36934384 PMCID: PMC11269473 DOI: 10.1007/s11030-023-10628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
Monoamine oxidase (MAO) are flavoenzymes that metabolize neurotransmitter, dietary and xenobiotic amines to their corresponding aldehydes with the production of hydrogen peroxide. Two isoforms, MAO-A and MAO-B, are expressed in humans and mammals, and display different substrate and inhibitor specificities as well as different physiological roles. MAO inhibitors are of much therapeutic value and are used for the treatment of neuropsychiatric and neurodegenerative disorders such as depression, anxiety disorders, and Parkinson's disease. To discover MAO inhibitors with good potencies and interesting isoform specificities, the present study synthesized a series of 2,1-benzisoxazole (anthranil) derivatives and evaluated them as in vitro inhibitors of human MAO. The compounds were in most instances specific inhibitors of MAO-B with the most potent MAO-B inhibition observed for 7a (IC50 = 0.017 µM) and 7b (IC50 = 0.098 µM). The most potent MAO-A inhibition was observed for 3l (IC50 = 5.35 µM) and 5 (IC50 = 3.29 µM). It is interesting to note that 3-(2-aminoethoxy)-1,2-benzisoxazole derivatives, the 1,2-benzisoxazole, zonisamide, as well as the isoxazole compound, leflunomide, have been described as MAO inhibitors. This is however the first report of MAO inhibition by derivatives of the 2,1-benzisoxazole structural isomer.
Collapse
Affiliation(s)
- Anton Shetnev
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Alexandr Kotov
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Anna Kunichkina
- Department of Organic Chemistry, Kosygin Russian State University, 115035, Moscow, Russia
| | - Irina Proskurina
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Sergey Baykov
- Institute of ChemistryDepartment of Organic Chemistry, Kosygin Russian State University, 115035, Moscow, Russia, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108 Respublikanskaya St., Yaroslavl, 150000, Russian Federation
| | - Anél Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
5
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
6
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
7
|
Basak SJ, Dash J. Potassium tert-Butoxide-Mediated Cascade Synthesis of Rutaecarpine Alkaloid Analogues: Access to Molecular Complexity on Multigram Scales. J Org Chem 2024; 89:233-244. [PMID: 38037902 DOI: 10.1021/acs.joc.3c01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this study, we present a novel and cost-effective approach for synthesizing biologically significant analogues of rutaecarpine alkaloid through a one-step cascade reaction. The pentacyclic core of rutaecarpine alkaloid analogues is efficiently constructed using 2-aminobenzonitriles and substituted indole-2-carbaldehydes in the presence of the affordable base KOtBu. The salient feature of this approach is the promotion of a sequential cascade process within a single reaction vessel including the formation of a dihydroquinazolinone ring, oxidation, and cyclization. This method can be successfully applied on a larger scale, making it economically viable.
Collapse
Affiliation(s)
- Soumya Jyoti Basak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Wang Y, Zhang X, Li S, Guo M, Ma W, Yuan J. One-pot Synthesis of 2,3-disubstituted-4(3 H)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter. Curr Org Synth 2024; 21:957-963. [PMID: 37581515 DOI: 10.2174/1570179421666230815151540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 08/16/2023]
Abstract
As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.
Collapse
Affiliation(s)
- Yin Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiuyu Zhang
- Department of Pharmacy, The People's Hospital of Kaizhou District, Chongqing, China
| | - Suzhen Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mengyi Guo
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wanqian Ma
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
9
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Chen X, Jin L, Wang Y, Yang H, Le Z, Xie Z. Synthesis of fused quinazolinones via visible light induced cyclization of 2-aminobenzaldehydes with tetrahydroisoquinolines. Org Biomol Chem 2023; 21:3863-3870. [PMID: 37093566 DOI: 10.1039/d3ob00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. Moreover, using 2-aminophenone as the substrate and under similar reaction conditions, the same product was obtained when a carbon was removed. The bio-active naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The success of the reaction on the gram-scale and the further transformation of the substrate demonstrated the synthetic practicability of this reaction.
Collapse
Affiliation(s)
- Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yihong Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Hong Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
11
|
Wang W, Pi C, Cui X, Wu Y. TBAI-Catalysed Formal [4+4]-Cycloaddition: Easy Access to Oxa-Bridged Eight-Membered Heterocycles. Chemistry 2023; 29:e202300301. [PMID: 36757635 DOI: 10.1002/chem.202300301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
TBAI-catalysed [4+4]-cyclization reaction of anthranils with hydrazones to deliver oxa-bridged eight-membered heterocycles in accepted yields was developed. Preliminary mechanistic studies indicated that the reaction involved the in situ generation of vinyldiazenes from readily available hydrazones followed by an aza-Michael addition of the anthranil substrates onto the vinyldiazenes and subsequent annulation. This transformation involved the formation of two new C-N bonds and C-O bond in one pot, overcoming the synthetic limitations of anthranils in organic chemistry. This strategy benefits from high efficiency and atomic economy with mild reaction conditions.
Collapse
Affiliation(s)
- Wenxiang Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
12
|
Wang M, Ye W, Sun N, Yu W, Chang J. Synthesis of Quinazolinone-Fused Tetrahydroisoquinolines and Related Polycyclic Scaffolds by Iodine-Mediated sp 3 C-H Amination. J Org Chem 2023; 88:1061-1074. [PMID: 36630199 DOI: 10.1021/acs.joc.2c02509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An iodine-mediated intramolecular sp3 C-H amination reaction producing quinazolinone-fused polycyclic skeletons from 2-aminobenzamide precursors is reported. This reaction does not use transition metals, has a broad substrate scope, and can be used on a gram scale. Under the optimal reaction conditions, a variety of quinazolinone-fused tetrahydroisoquinolines and derivatives of Rutaecarpine were synthesized from readily accessible compounds. The reaction proceeds well with crude 2-aminobenzamide derivatives, allowing for the synthesis of the products from simple 2-aminobenzoic acids and tetrahydroisoquinolines without purification of the 2-aminobenzamide intermediates. Preliminary biological experiments have identified Cereblon (CRBN) inhibitory activity and relevant anti-myeloma medicinal properties in some of these polycyclic products.
Collapse
Affiliation(s)
- Manman Wang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Ye
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Sun
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Bogdos MK, Müller P, Morandi B. Structural Evidence for Aromatic Heterocycle N–O Bond Activation via Oxidative Addition. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael K. Bogdos
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Hou GQ, Zhao W, Deng C, Dong C, Wang C, Liu L, Li J. Acid-Promoted Redox-Annulation toward 1,2-Disubstituted-5,6-dihydropyrrolo[2,1-α]isoquinolines: Synthesis of the Lamellarin Core. ACS OMEGA 2022; 7:37050-37060. [PMID: 36312359 PMCID: PMC9608416 DOI: 10.1021/acsomega.2c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
An efficient synthesis of a variety of 1,2-disubstituted-5,6-dihydropyrrolo[2,1-α]isoquinoline derivatives via an acid-promoted cyclization reaction between 1,2,3,4-tetrahydroisoquinoline (THIQ) and substituted α,β-unsaturated aldehyde derivatives is reported. This cycloaddition allows access to structurally diverse multisubstituted dihydropyrrolo[2,1-α]isoquinolines in moderate to good yields, which was the core scaffold of marine natural alkaloid lamellarins.
Collapse
Affiliation(s)
- Guo-Quan Hou
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Wenyan Zhao
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Changjiang Deng
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Chunping Dong
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Cheli Wang
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Li Liu
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| | - Jian Li
- School of Pharmacy, Analysis
and Testing Center, NERC Biomass of Changzhou University, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Liang B, Wen T, Chen G, Cai Z, Xu J, Chen X, Zhu Z. Copper‐Catalyzed Acylhalogenation of 3‐Methylanthranils with Acid Halides: Synthesis of N‐(2‐(2‐Haloyl)phenyl)amides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Taneda M, Nishi M, Kubono K, Kashiwagi Y, Matsumoto T. Crystal structure of N-(1 H-indol-2-yl-methyl-idene)-4-meth-oxy-aniline. Acta Crystallogr E Crystallogr Commun 2022; 78:449-452. [PMID: 35492277 PMCID: PMC8983973 DOI: 10.1107/s2056989022002973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022]
Abstract
The mol-ecule of the title compound, C16H14N2O, contains an essentially planar indole ring system and a phenyl ring. In the crystal, the mol-ecules are linked by a weak inter-molecular C-H⋯O hydrogen bond and C-H⋯π inter-actions, forming a one-dimensional column structure along the b-axis direction. These columns are linked by other C-H⋯π inter-actions, forming a two-dimensional network structure.
Collapse
Affiliation(s)
- Masatsugu Taneda
- Department of Science Education, Faculty of Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
| | - Masato Nishi
- Department of Science Education, Faculty of Education, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
| | - Koji Kubono
- Division of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
| | - Yukiyasu Kashiwagi
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Taisuke Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
17
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
18
|
Ly D, Nguyen TT, Tran CTH, Nguyen VPT, Nguyen KX, Pham PH, Le NTH, Nguyen TT, Phan NTS. Metal-Free Annulation of 2-Nitrobenzyl Alcohols and Tetrahydroisoquinolines toward the Divergent Synthesis of Quinazolinones and Quinazolinethiones. J Org Chem 2021; 87:103-113. [PMID: 34918926 DOI: 10.1021/acs.joc.1c02017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple metal-free method for the synthesis of quinazolinones from commercially available 2-nitrobenzyl alcohols and tetrahydroisoquinolines is developed. The reaction conditions were tolerant of an array of functionalities such as halogen, tertiary amine, protected alcohol, and ester groups. Under nearly identical conditions, quinazolinethiones were obtained in the presence of elemental sulfur and suitable mediators.
Collapse
Affiliation(s)
- Duc Ly
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Cam T H Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Vy P T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nhan T H Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
19
|
Tashrifi Z, Mohammadi Khanaposhtani M, Larijani B, Mahdavi M. C1‐Functionalization of 1,2,3,4‐Tetrahydroisoquinolines (THIQs). ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Zhang M, Meng Y, Wu Y, Song C. TfOH-Promoted Decyanative Cyclization toward the Synthesis of 2,1-Benzisoxazoles. J Org Chem 2021; 86:7326-7332. [PMID: 34014082 DOI: 10.1021/acs.joc.1c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel solvent-free, TfOH-promoted decyanative cyclization approach for the synthesis of 2,1-benzisoxazoles has been developed. The reactions are complete instantly at room temperature and result in the formation of the desired 2,1-benzisoxazoles in a 34-97% isolated yield.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yangang Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Gao C, Xu J, Zhu S, Jian K, Xuan Q, Song Q. Preparation of anthranils via chemoselective oxidative radical cyclization of 3-(2-azidoaryl) substituted propargyl alcohols. Chem Commun (Camb) 2021; 57:2037-2040. [PMID: 33507184 DOI: 10.1039/d0cc07919g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the presence of K2S2O8 and HOAc, 3-(2-azidoaryl) substituted propargyl alcohols can go through chemoselective oxidative radical cyclizations to give a pool of anthranils based on Meyer-Schuster rearrangement. It's proposed that the cyclizations were triggered exclusively by the direct attack of oxygen radicals on the azides. The weak N-O bonds in anthranils could be easily cleaved in the presence of transition metal catalysts and went through aminations with 2-oxo-2-phenylacetic acid and iodobenzene.
Collapse
Affiliation(s)
- Chao Gao
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, 361021, Fujian, China.
| | | | | | | | | | | |
Collapse
|
22
|
Wang ZH, Wang H, Wang H, Li L, Zhou MD. Ruthenium(II)-Catalyzed C–C/C–N Coupling of 2-Arylquinazolinones with Vinylene Carbonate: Access to Fused Quinazolinones. Org Lett 2021; 23:995-999. [DOI: 10.1021/acs.orglett.0c04200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhao-Hui Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Hua Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Lei Li
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| |
Collapse
|
23
|
Wang D, Xiao F, Zhang F, Huang H, Deng G. Copper‐Catalyzed
Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to
Isoquinolino‐Fused
Quinazolinones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
- School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
24
|
Chen X, Xia F, Zhao Y, Ma J, Ma Y, Zhang D, Yang L, Sun P. TBHP‐Mediated
Oxidative Decarboxylative Cyclization in Water: Direct and Sustainable Access to Anti‐malarial Polycyclic Fused Quinazolinones and Rutaecarpine. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyu Chen
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Fei Xia
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yifan Zhao
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ji Ma
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yue Ma
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Dong Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Lan Yang
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Peng Sun
- Artemisinin Research Center and Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
25
|
Wang N, Yang Q, Deng Z, Mao X, Peng Y. Rhodium-Catalyzed Merging of 2-Arylquinazolinone and 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Monofluoroolefin Quinazolinone Derivatives. ACS OMEGA 2020; 5:14635-14644. [PMID: 32596601 PMCID: PMC7315571 DOI: 10.1021/acsomega.0c01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 05/07/2023]
Abstract
An efficient method for the synthesis of 2-(o-monofluoroalkenylaryl)quinazolinone derivatives was developed. In this context, the quinazolinone ring served as the inherent directing group, 2,2-difluorovinyl tosylate was used as the monofluoroolefin synthon, and Rh(III)-catalyzed C-H bond difluorovinylation of 2-arylquinazolinons was performed to give the corresponding monofluoroalkene-containing quinazolinons in yields of 65-92%. The method is characterized by broad synthetic utility, mild conditions, and high efficiency.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Zhihong Deng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Xuechun Mao
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| |
Collapse
|
26
|
Gao Y, Nie J, Huo Y, Hu XQ. Anthranils: versatile building blocks in the construction of C–N bonds and N-heterocycles. Org Chem Front 2020. [DOI: 10.1039/d0qo00163e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article provides an overview of the recent progress in the transformations of anthranils, which have emerged as versatile building blocks in the assembly of various C–N bonds and medicinally active heterocyclic systems.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
27
|
Chen X, Zhang X, Lu S, Sun P. Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Adv 2020; 10:44382-44386. [PMID: 35517151 PMCID: PMC9058480 DOI: 10.1039/d0ra09382c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
A direct decarboxylative cyclization between readily available isatoic anhydrides and cyclic amines was established to construct polycyclic fused quinazolinones employing electrochemical methods. This procedure was performed in an undivided cell without the use of a transition-metal-catalyst and external oxidant. A broad scope of polycyclic fused quinazolinones were obtained in moderate to good yields. Additionally, rutaecarpine was also prepared through our method in one step in good yield. Polycyclic quinazolinones and rutaecarpine were synthesized from isatoic anhydrides and cyclic amines through an electrochemical method without an external oxidant and transition-metal-catalyst.![]()
Collapse
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Xing Zhang
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Sixian Lu
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Peng Sun
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| |
Collapse
|
28
|
Jia FC, Chen TZ, Hu XQ. TFA/TBHP-promoted oxidative cyclisation for the construction of tetracyclic quinazolinones and rutaecarpine. Org Chem Front 2020. [DOI: 10.1039/d0qo00345j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient TFA/TBHP-promoted oxidative cyclisation of readily available isatins with 1,2,3,4-tetrahydroisoquinolines has been firstly developed. The potential utility of this strategy was demonstrated by one-step synthesis of a natural alkaloid Rutaecarpin.
Collapse
Affiliation(s)
- Feng-Cheng Jia
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Tian-Zhi Chen
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|