1
|
Zhang J, Li X, Chen G, Liu H, Luo H. Electro-catalyzed, solvent-controlled divergent decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines. Chem Commun (Camb) 2025; 61:1669-1672. [PMID: 39744981 DOI: 10.1039/d4cc05582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we reported a sustainable and simple method involving electrochemical-catalyzed decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines by switching the reaction solvents. When the reaction was carried out in MeCN/H2O or H2O, the resulting products included imidazolidine-fused sulfamidates and C4-aminomethylated cyclic aldimines, obtained in moderate to good yields, respectively. Mechanistically, a radical pathway was proposed to be involved in this approach.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Guisheng Chen
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haidong Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Yadav J, Patel A, Dolas AJ, Iype E, Rangan K, Kumar I. Organocatalytic Asymmetric Construction of 2,6-Diazabicyclo-[2.2.2]octanes by Harnessing the Potential of an 3-Oxindolium Ion Intermediate. Angew Chem Int Ed Engl 2025; 64:e202416042. [PMID: 39404958 DOI: 10.1002/anie.202416042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/14/2024]
Abstract
Due to its structural complexity and intrinsic sensitivity of bridged aminal junction, 2,6-diazabicyclo[2.2.2]octane (2,6-DABCO) has remained a highly desirable target in synthetic chemistry. However, the asymmetric access to this unit is still insufficient and hampered by the need for meticulously created functionalities for intricate double aza-cyclizations. Herein, we have developed a novel enantio- and diastereoselective protocol to access polycyclic chiral 2,6-DABCOs under metal-free conditions. This domino process involves the amine-catalyzed [4+2] annulation between glutaraldehyde and 2-arylindol-3-ones, followed by an acid-mediated Pictet-Spengler reaction/intramolecular aza-cyclization cascade sequence with tryptamine by trapping of in situ generated 3-oxindolium ion intermediate for the first time. Overall, 2,6-DABCOs fused with medicinally relevant scaffolds were isolated with good yield and excellent stereoselectivity by constructing five new bonds and four stereocenters in a one-pot operation.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Arun Patel
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| |
Collapse
|
3
|
Huang J, You SY, Hu LZ, He YH, Guan Z. One-Pot Photocascade Catalysis: Access to Pyrrole Derivatives from N-Arylglycines and Morita-Baylis-Hillman (MBH) Acetates. Org Lett 2024; 26:10195-10200. [PMID: 39556041 DOI: 10.1021/acs.orglett.4c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The step-economical synthesis of pyrrole derivatives has posed a challenge in the field of N-heterocyclic chemistry. A novel photocascade catalytic radical SN2'-type reaction/radical addition/annulation sequence of MBH acetates provides a straightforward route to pyrrole derivatives by forming new C-C, C-N, and C═C bonds in one pot, using N-arylglycines as the α-arylaminomethyl radical precursors for double insertion.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Yu You
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling-Zhi Hu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Pan C, Xiang C, Yu JT. Organophotocatalytic pyridination of N-arylglycines with 4-cyanopyridines by decarboxylative and decyanative radical-radical coupling. Org Biomol Chem 2024; 22:7806-7810. [PMID: 39254473 DOI: 10.1039/d4ob01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A photocatalytic decarboxylative aminoalkylation of 4-cyanopyridines with N-arylglycines is achieved, providing 4-(aminomethyl)pyridine derivatives in moderate to good yields. This organic photocatalytic reaction undergoes a radical-radical cross-coupling process under redox-neutral conditions, featuring simple operation, readily available N-arylglycines and a broad substrate scope. Mechanistic investigations indicated that a proton-coupled electron-transfer process was involved to enable the single electron transfer between the reduced photocatalyst and 4-cyanopyridine in the presence of N-arylglycines.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
5
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
6
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
7
|
Lu YH, Mu SY, Jiang J, Zhou MH, Wu C, Ji HT, He WM. Paraformaldehyde as C1 Synthon: Electrochemical Three-Component Synthesis of Tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones in Aqueous Ethanol. CHEMSUSCHEM 2023; 16:e202300523. [PMID: 37728196 DOI: 10.1002/cssc.202300523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/21/2023]
Abstract
A green and practical method for the electrochemical synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones through the three-component reaction of quinoxalin-2(1H)-ones, N-arylglycines and paraformaldehyde was reported. In this strategy, EtOH played dual roles (eco-friendly solvent and waste-free pre-catalyst) and the in situ generated ethoxide promoted triple sequential deprotonations.
Collapse
Affiliation(s)
- Yu-Han Lu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Yu Mu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
8
|
Shao T, Ban X, Jiang Z. α-Amino Acids: An Emerging Versatile Synthon in Visible Light-Driven Decarboxylative Transformations. CHEM REC 2023; 23:e202300122. [PMID: 37276383 DOI: 10.1002/tcr.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Indexed: 06/07/2023]
Abstract
α-Amino acids have been widely recognized as environmental-benign and non-fossil carbon sources both in biological and synthetic chemistry. In recent years, with the remarkable development of visible-light photocatalysis in organic synthesis, α-amino acid and its derivatives have received tremendous attention as radical precursors via photocatalyzed decarboxylation, thus realizing diverse aminoalkylated transformations or constructions of novel N-bearing heterocyclic motifs by taking advantage of N-atoms from α-amino acid. This review aims to provide a comprehensive update on the recent exploitation of α-amino acids in visible light photocatalysis, with particular emphasis on the types of α-amino acids employed and their distinct mechanisms applied wherein.
Collapse
Affiliation(s)
- Tianju Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Jinming Campus, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
9
|
Yoshida Y, Takeuchi H, Nakagawa K, Fujii T, Arichi N, Oishi S, Ohno H, Inuki S. Construction of a Bicyclo[2.2.2]octene Skeleton via a Visible-Light-Mediated Radical Cascade Reaction of Amino Acid Derivatives with N-(2-Phenyl)benzoyl Groups. Org Lett 2023. [PMID: 37366566 DOI: 10.1021/acs.orglett.3c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bridged polycyclic ring systems constitute the core structures of numerous natural products and biologically active molecules. We found that simple biphenyl substrates derived from amino acids participate in a radical cascade reaction under visible light irradiation in the presence of [Ir{dF(CF3)ppy}2(dtbpy)]PF6 to enable the direct construction of bicyclo[2.2.2]octene structures. Isotopic labeling experiments suggested that intramolecular hydrogen atom transfer is involved in the cascade processes.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Runemark A, Sundén H. Overcoming Back Electron Transfer in the Electron Donor-Acceptor Complex-Mediated Visible Light-Driven Generation of α-Aminoalkyl Radicals from Secondary Anilines. J Org Chem 2023; 88:462-474. [PMID: 36479960 PMCID: PMC9830629 DOI: 10.1021/acs.joc.2c02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An additive-free, visible light-driven annulation between N-aryl amino acids and maleimide to form tetrahydroquinolines (THQs) is disclosed. Photochemical activation of an electron donor-acceptor (EDA) complex between amino acids and maleimides drives the reaction, and aerobic oxygen acts as the terminal oxidant in the net oxidative process. A range of N-aryl amino acids and maleimides have been investigated as substrates to furnish the target THQ in good to excellent yield. Mechanistic investigations, including titration and UV-vis studies, demonstrate the key role of the EDA complex as the photoactive species.
Collapse
Affiliation(s)
- August Runemark
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden,Chemistry
and Molecular Biology, University of Gothenburg, Kemivägen 10, Gothenburg 412 96, Sweden,
| |
Collapse
|
11
|
Tang Z, Pi C, Wu Y, Cui X. Visible-light-promoted tandem decarboxylation coupling/cyclization of N-aryl glycines with quinoxalinones: Easy access to tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Shen BR, Annamalai P, Wang SF, Bai R, Lee CF. Blue LED-Promoted Syntheses of Phosphorothioates and Phosphorodithioates. J Org Chem 2022; 87:8858-8870. [PMID: 35762987 DOI: 10.1021/acs.joc.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An environmentally friendly and resourceful modular protocol for the synthesis of phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates under blue light-emitting diode irradiation is described. The blue LED-promoted P-S, P-Se, and P-Te bond constructions occurred under metal-free, ligand-free, oxidant-free, and photocatalyst-free conditions with minimum chemical waste generation and high atom economy providing the resulting phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates in good to excellent yields.
Collapse
Affiliation(s)
- Bo-Ru Shen
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | | | - Shih-Fang Wang
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
13
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
14
|
Starosotnikov AM, Bastrakov MA. Heterocycles
via
Dearomatization Reactions. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Li S, Li X, Wang T, Yang Q, Ouyang Z, Chen J, Zhai H, Li X, Cheng B. Electrochemical Decarboxylative Coupling of N‐Substituted Glycines under Air: Access to C3‐Aminomethylated Imidazo[1,2‐a]pyridines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | | | - Hongbin Zhai
- Peking University Shenzhen Graduate School CHINA
| | - Xiao Li
- University of Science and Technology Liaoning CHINA
| | | |
Collapse
|
16
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
17
|
Hu J, Zhu Z, Xie Z, Le Z. Recent Advances in Visible-Light-Induced Decarboxylative Coupling Reactions of α-Amino Acid Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhou C, Huang X, Hu Y, Wu J, Zheng Y, Zhang X. Catalyst-free visible light-induced decarboxylative amination of glycine derivatives with azo compounds. NEW J CHEM 2022. [DOI: 10.1039/d1nj05079f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible light-induced, catalyst-free decarboxylative amination of glycine derivatives with azo compounds was achieved to deliver functionalized aminals under mild reaction conditions.
Collapse
Affiliation(s)
- Cen Zhou
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Xiaozhou Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Yaqing Hu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Junyan Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Ying Zheng
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| |
Collapse
|
19
|
Lin XL, Yu Y, Zhang L, Leng LJ, Xiao DR, Cai T, Luo QL. Switchable synthesis of 1,4-bridged dihydroisoquinoline-3-ones and isoquinoline-1,3,4-triones through radical oxidation of isoquinolinium salts with phenyliodine( iii) diacetate. Org Chem Front 2022. [DOI: 10.1039/d2qo00887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switchable synthesis of 1,4-bridged dihydroisoquinoline-3-ones and isoquinoline-1,3,4-triones is developed via radical oxidation of isoquinolinium salts with PhI(OAc)2.
Collapse
Affiliation(s)
- Xiao-Long Lin
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Yu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li-Jing Leng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Dong-Rong Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Southwest University, Chongqing 400715, China
| | - Qun-Li Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Wu W, Wang H, Chen J, Bao X, Tan C, Ye X. Dicyanopyrazine‐derived Chromophore as An Efficient Photocatalyst for α‐amino C‐H Bond Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wentao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Jun Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| |
Collapse
|
21
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Hu W, Zhan Q, Zhou H, Cao S, Jiang Z. Radical-based functionalization-oriented construction: rapid assembly of azaarene-substituted highly functionalized pyrroles. Chem Sci 2021; 12:6543-6550. [PMID: 34040730 PMCID: PMC8132952 DOI: 10.1039/d1sc01470f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Totally different functionalization and construction as two fundamental synthetic protocols have long been applied to furnish azaarene variants. Here, a novel radical-based functionalization-oriented construction strategy by exploiting the electronic properties of azaarenes and the high reactivity of radicals is developed. Under a photoredox catalysis platform, the robust ability of such an artful combination of functionalization with construction is disclosed in the synthesis of valuable 3-azaarene-substituted densely functionalized pyrroles. In addition to the ability to use the readily accessible feedstocks, the high synthetic efficiency and the good functional group tolerance, the substrate scope is broad (81 examples) resulting from the capability to flexibly replace the types of azaarenes and other substituents. Control experiments and density functional theory (DFT) calculations elucidate the plausible mechanism involving the reaction pathways and the important role of NaH2PO4 as an additive in the reaction.
Collapse
Affiliation(s)
- Weigao Hu
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan 475004 P. R. China
| | - Qiangqiang Zhan
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan 475004 P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang P. R. China 314001
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang P. R. China 314001
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhiyong Jiang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University Kaifeng Henan 475004 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
23
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
24
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
25
|
Zhou Z, Kong X, Liu T. Applications of Proton-Coupled Electron Transfer in Organic Synthesis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Huang XL, Cheng YZ, Zhang X, You SL. Photoredox-Catalyzed Intermolecular Hydroalkylative Dearomatization of Electron-Deficient Indole Derivatives. Org Lett 2020; 22:9699-9705. [DOI: 10.1021/acs.orglett.0c03759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu-Lun Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Lu, Fuzhou 350007, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
27
|
Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox‐Catalyzed 1,2‐Hydroalkylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Cheng Y, Huang X, Zhuang W, Zhao Q, Zhang X, Mei T, You S. Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox‐Catalyzed 1,2‐Hydroalkylation. Angew Chem Int Ed Engl 2020; 59:18062-18067. [DOI: 10.1002/anie.202008358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan‐Zheng Cheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xu‐Lun Huang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei‐Hui Zhuang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 32 Shangsan Lu Fuzhou 350007 China
| | - Qing‐Ru Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 32 Shangsan Lu Fuzhou 350007 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
29
|
Yin Y, Zhao X, Jiang Z. Advances in the Synthesis of Imine‐Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000741] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanli Yin
- College of Bioengineering Henan University of Technology Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaowei Zhao
- College of Pharmacy Henan University Kaifeng Henan 475004 P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
30
|
An XD, Yang S, Qiu B, Yang TT, Li XJ, Xiao J. Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. J Org Chem 2020; 85:9558-9565. [PMID: 32567860 DOI: 10.1021/acs.joc.0c00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic addition processes to access β-substituted pyrroles from pyrrolidines has been achieved. The significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional group tolerance, high atom economy, and high regioselectivity as well as easy handling conditions make it an appealing alternative to synthesize β-substituted pyrroles.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting-Ting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
31
|
|
32
|
Shi T, Sun K, Chen X, Zhang Z, Huang X, Peng Y, Qu L, Yu B. Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazo‐Fused Heterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901324] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Shi
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| | - Kai Sun
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| | - Xiao‐Lan Chen
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| | - Zhao‐Xin Zhang
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| | - Xian‐Qiang Huang
- School of Chemistry & Chemical EngineeringLiaocheng University Liaocheng, Shandong 252059 People's Republic of China
| | - Yu‐Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Ling‐Bo Qu
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| | - Bing Yu
- Green Catalysis CenterCollege of ChemistryZhengzhou University Zhengzhou 450001, People's Republic of China
| |
Collapse
|
33
|
Liu XC, Chen XL, Liu Y, Sun K, Peng YY, Qu LB, Yu B. Visible-Light-Induced Metal-Free Synthesis of 2-Phosphorylated Thioflavones in Water. CHEMSUSCHEM 2020; 13:298-303. [PMID: 31713317 DOI: 10.1002/cssc.201902817] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The introduction of phosphorus functional groups into the skeleton of thioflavones is an attractive task and of great significance. Herein, a metal-free visible-light-induced radical cascade cyclization was developed for the preparation of 2-phosphorylated thioflavones from methylthiolated alkynones and phosphine oxides. In water as a green reaction medium, a large number of such 2-phosphorylated thioflavones were prepared, catalyzed by 4CzIPN [1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene] under visible-light irradiation. These reactions could be performed at ambient temperature and feature simple operation, wide reaction scope, and recyclability of aqueous media.
Collapse
Affiliation(s)
- Xiao-Ceng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang, 464000, P.R. China
| | - Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Yu-Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P.R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
34
|
Xiong L, Hu H, Wei CW, Yu B. Radical Reactions for the Synthesis of 3-Substituted Chroman-4-ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901581] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Li Xiong
- Department of Bioengineering; Zhuhai Campus of Zunyi Medical University; 519041 Zhuhai Guangdong Province China
| | - Hao Hu
- College of Chemistry; Zhengzhou University; 450001 Zhengzhou China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering; University of South China; 421001 Hengyang China
| | - Bing Yu
- College of Chemistry; Zhengzhou University; 450001 Zhengzhou China
| |
Collapse
|
35
|
Yuan XY, Zeng FL, Zhu HL, Liu Y, Lv QY, Chen XL, Peng L, Yu B. A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00222d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A metal-free visible-light-induced phosphorylation/cyclization reaction was developed in water at room temperature for the synthesis of 3-phosphorylated benzothiophenes.
Collapse
Affiliation(s)
- Xiao-Ya Yuan
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Fan-Lin Zeng
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Qi-Yan Lv
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|