1
|
Omidian H, Cubeddu LX, Wilson RL. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules 2025; 30:1572. [PMID: 40286158 DOI: 10.3390/molecules30071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide-functionalized nanomedicine has emerged as a transformative approach in precision therapeutics and diagnostics, leveraging the specificity of peptides to enhance the performance of nanocarriers, including gold nanoparticles, polymeric nanoparticles, liposomes, mesoporous silica nanoparticles, and quantum dots. These systems enable targeted drug delivery, molecular imaging, biosensing, and regenerative medicine, offering unparalleled advantages in bioavailability, cellular uptake, and therapeutic selectivity. This review provides a comprehensive analysis of peptide-functionalization strategies, nanocarrier design, and their applications across oncology, neurodegenerative disorders, inflammatory diseases, infectious diseases, and tissue engineering. We further discuss the critical role of physicochemical characterization, in vitro and in vivo validation, and regulatory considerations in translating these technologies into clinical practice. Despite the rapid progress in peptide-functionalized platforms, challenges related to stability, immune response, off-target effects, and large-scale reproducibility remain key obstacles to their widespread adoption. Addressing these through advanced peptide engineering, optimized synthesis methodologies, and regulatory harmonization will be essential for their clinical integration. By bridging fundamental research with translational advancements, this review provides an interdisciplinary roadmap for the next generation of peptide-functionalized nanomedicines poised to revolutionize targeted therapy and diagnostics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Luigi X Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Renae L Wilson
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
2
|
Zhao X, Gabriëls RY, Hooghiemstra WTR, Koller M, Meersma GJ, Buist-Homan M, Visser L, Robinson DJ, Tenditnaya A, Gorpas D, Ntziachristos V, Karrenbeld A, Kats-Ugurlu G, Fehrmann RSN, Nagengast WB. Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to Detect Dysplasia in Barrett's Esophagus. Cancers (Basel) 2022; 14:cancers14102462. [PMID: 35626066 PMCID: PMC9139936 DOI: 10.3390/cancers14102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Barrett’s esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ruben Y. Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gert Jan Meersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Dominic J. Robinson
- Center for Optic Diagnostics and Therapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Anna Tenditnaya
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Arend Karrenbeld
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Rudolf S. N. Fehrmann
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Correspondence: ; Tel.: +31-(50)-361-6161
| |
Collapse
|
3
|
Avugadda SK, Wickramasinghe S, Niculaes D, Ju M, Lak A, Silvestri N, Nitti S, Roy I, Samia ACS, Pellegrino T. Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters. NANOMATERIALS 2020; 11:nano11010062. [PMID: 33383768 PMCID: PMC7824301 DOI: 10.3390/nano11010062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Multifunctional imaging nanoprobes continue to garner strong interest for their great potential in the detection and monitoring of cancer. In this study, we investigate a series of spatially arranged iron oxide nanocube-based clusters (i.e., chain-like dimer/trimer, centrosymmetric clusters, and enzymatically cleavable two-dimensional clusters) as magnetic particle imaging and magnetic resonance imaging probes. Our findings demonstrate that the short nanocube chain assemblies exhibit remarkable magnetic particle imaging signal enhancement with respect to the individually dispersed or the centrosymmetric cluster analogues. This result can be attributed to the beneficial uniaxial magnetic dipolar coupling occurring in the chain-like nanocube assembly. Moreover, we could effectively synthesize enzymatically cleavable two-dimensional nanocube clusters, which upon exposure to a lytic enzyme, exhibit a progressive increase in magnetic particle imaging signal at well-defined incubation time points. The increase in magnetic particle imaging signal can be used to trace the disassembly of the large planar clusters into smaller nanocube chains by enzymatic polymer degradation. These studies demonstrate that chain-like assemblies of iron oxide nanocubes offer the best spatial arrangement to improve magnetic particle imaging signals. In addition, the nanocube clusters synthesized in this study also show remarkable transverse magnetic resonance imaging relaxation signals. These nanoprobes, previously showcased for their outstanding heat performance in magnetic hyperthermia applications, have great potential as dual imaging probes and could be employed to improve the tumor thermo-therapeutic efficacy, while offering a readable magnetic signal for image mapping of material disassemblies at tumor sites.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Sameera Wickramasinghe
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Dina Niculaes
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
| | - Aidin Lak
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Simone Nitti
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S10 2 TN, UK;
| | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; (S.W.); (M.J.)
- Correspondence: (A.C.S.S.); (T.P.)
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; (S.K.A.); (D.N.); (A.L.); (N.S.); (S.N.)
- Correspondence: (A.C.S.S.); (T.P.)
| |
Collapse
|