1
|
An X, Ma H, Zhang T, Cui G, He X, Wang M. Synthesis of Diastereomeric Hydrobenzofurans and Hydronaphthofurans via an Iodine Reagent-Promoted Intramolecular Dearomatization Reaction. J Org Chem 2025; 90:2760-2769. [PMID: 39937687 DOI: 10.1021/acs.joc.4c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The first metal- and base-free construction of diastereomeric hydrobenzofurans and hydronaphthofurans, which were capable of further transformations to achieve natural product frameworks, was achieved by the intramolecular oxidized dearomatization of phenol or naphthol derivatives via the promotion of iodine reagents. Enantioselective products were obtained through chiral substrates or iodine catalysts. This step-economical protocol built multiple chiral centers with extensive tolerance of various substrates, which resulted in a potential molecular library for developing functional polycyclic scaffolds.
Collapse
Affiliation(s)
- Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Guoen Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xie He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wang X, Li L, Du Z, Han X, You Y. Electrochemical Dichlorinative Cyclization of 1, n-Enynes by 4-Iodotoluene Catalysis. Org Lett 2024; 26:10583-10588. [PMID: 39606953 DOI: 10.1021/acs.orglett.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An electrochemical approach for the indirect oxidative generation of hypervalent iodoarene as a reaction catalyst has been reported. The reaction proceeds first from the generation of active Cl species by electro-oxidation, followed by oxidative transfer to generate ArICl2, which subsequently reacts with enynes to achieve cyclization. This protocol provides a simple and green method for accessing dichlorinative cyclization products in high yields with good selectivity.
Collapse
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Longji Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University and Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou 450052, China
| | - Zhongjian Du
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University and Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou 450052, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| |
Collapse
|
3
|
Huang X, Yi C, Bai M, Tang Y, Xu S, Li Y. Ruthenium and Iodine Anion Cocatalyzed Cascade Dihalogenation and Cyclization of Internal Alkyne-Tethered Cyclohexadienones with 1,2-Dihaloethanes. J Org Chem 2024; 89:9686-9694. [PMID: 38907735 DOI: 10.1021/acs.joc.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
We have established an efficient ruthenium(II) and iodine anion cocatalyzed dihalogenation and cascade cyclization of internal alkyne-tethered cyclohexadienones, which stereoselectively afforded numerous dihalogenation products with a bioactive hydrobenzofuran skeleton in high yields under mild conditions. In this transformation, the reaction pathway was determined by the concentration of electrophilic iodine reagent, which also provided a strategy for control of the reaction selectivity. Furthermore, this method features the use of 1,2-dihaloroethane as the halogen source via iodine anion catalyst.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cui Yi
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Meiqi Bai
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhu L, Song X, Wang XJ, Zhu B, Ouyang Q, Du W, Chen YC. Pd(0)-Catalyzed Asymmetric Cyclization/Coupling Cascade of Alkyne-Tethered Unsaturated Carbonyls: Development and Mechanism Elucidation. J Am Chem Soc 2024; 146:5977-5986. [PMID: 38395050 DOI: 10.1021/jacs.3c12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
While the Pd(0)-catalyzed cyclization of alkyne-tethered unsaturated carbonyl substrates has been reported, the mechanism has not been well elucidated, and the potential asymmetric version remains to be developed. Here, we disclose that a chiral Pd(0) complex can efficiently promote the desymmetrizative cyclization of alkyne-tethered cyclohexadienones in CH3OH, and the resultant Pd(II) intermediates further undergo an array of tandem coupling reactions, including Suzuki, Sonogashira, and even chemoselective reduction by CH3OH in the absence of additional coupling partners. As a result, a broad spectrum of hydrobenzofuran derivatives, having a tetra- or trisubstituted exo-alkene motif, is constructed with moderate to outstanding enantioselectivity in an exclusive cis-difunctionalization pattern. In addition, this enantioselective protocol can be well expanded to linear alkyne-tethered unsaturated carbonyls, and a new desymmetrizative and asymmetric cyclization/coupling cascade of bis-alkyne-tethered enones is further realized efficiently, furnishing diversely structured frameworks with high stereoselectivity. Moreover, kinetic transformation for various racemic alkyne-tethered enones can be accomplished under similar catalytic conditions, and unusual kinetic reactions by chemoselectively undertaking Suzuki or Sonogashira coupling, or reduction by CH3OH, occur sequentially, finally yielding two types of chiral products, both with high enantioselectivity via either ligand- or substrate-based control. The experimental results demonstrate that the current Pd(0)-based strategy is superior to the classical Pd(II)-catalyzed carbopalladation/cyclization process of the identical substrates with regard to enantioselectivity and synthetic versatility. Moreover, density functional theory calculations are conducted to rationalize the Pd(0)-catalyzed oxidative cyclometalation pathway in the key cyclization step, which leads to the observed cis-difunctionalized products exclusively.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Jun Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
5
|
Patel RK, Jha P, Chauhan A, Kant R, Kumar R. Polycyclic Pyrazoles from Alkynyl Cyclohexadienones and Nonstabilized Diazoalkanes via [3 + 2]-Cycloaddition/[1,5]-Sigmatropic Rearrangement/Aza-Michael Reaction Cascade. Org Lett 2024; 26:839-844. [PMID: 38252505 DOI: 10.1021/acs.orglett.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
An efficient method for the stereoselective synthesis of "all center substituted" polycyclic pyrazoles from alkynyl cyclohexa-2,5-dienones and nonstabilized diazoalkanes via sequential [3 + 2]-cycloaddition/[1,5]-sigmatropic rearrangement and aza-Michael reactions is reported. The developed process is highly regioselective and stereoselective. It employs a wide substrate scope to furnish structurally diverse linear and bridged [4.4.n.0] ring-fused pyrazoles in moderate to good yields. One-pot and gram-scale syntheses and synthetic transformations have also been showcased.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Zhan H, Chen B, Zhu B, Li X, Han Z, Sun J, Huang H. Construction of 5-methyleneoxazolidine-2,4-diones bearing modifiable halogen groups through a halopalladation strategy. Chem Commun (Camb) 2023; 59:13631-13634. [PMID: 37902867 DOI: 10.1039/d3cc04475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Based on a halopalladation strategy, we successfully developed a haloesterification reaction of propargylic amides to synthesize a diverse range of 5-(halomethylene)oxazolidine-2,4-diones. This reaction demonstrates good yield and compatibility with various functional groups. Notably, the halogen atoms present in the resulting products can be readily substituted by other functional groups, highlighting the versatility and appeal of this method. Additionally, we have achieved the successful cyclizative dimerization of propargylic amides to produce bisoxazolidine-2,4-dione derivatives.
Collapse
Affiliation(s)
- Huilin Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Bin Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Biao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Xiang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| |
Collapse
|
7
|
Hou J, Yin J, Han H, Yang Q, Li Y, Lou Y, Wu X, You Y. Regio- and Stereoselective Hydrochlorination/Cyclization of 1, n-Enynes by FeCl 3 Catalysis. Org Lett 2023. [PMID: 37285405 DOI: 10.1021/acs.orglett.3c01495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A highly regio- and stereoselective hydrochlorination/cyclization of enynes has been reported by FeCl3 catalysis. A variety of enynes undergo this cyclization transformation with acetic chloride as the chlorine source and H2O providing protons via a cationic pathway. This protocol provides a cheap, simple, stereospecific, and effective cyclization to afford heterocyclic alkenyl chloride compounds as Z isomers with high yields (≤98%) and regioselectivity.
Collapse
Affiliation(s)
- Jicheng Hou
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Junhao Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Hao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Qirui Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yougui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yazhou Lou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
8
|
Mishra AK, Chauhan A, Kumar S, Kant R, Kumar R. Catalyst-Controlled Diastereoselective Synthesis of Bridged [3.3.1] Bis(Indolyl)-Oxanes and Oxepanes via Desymmetrization of Bis(Indolyl)-Cyclohexadienones. Org Lett 2023; 25:3034-3039. [PMID: 37092788 DOI: 10.1021/acs.orglett.3c00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A catalyst-controlled divergent synthesis of bridged [3.3.1] bis(indolyl)-oxanes and cis-[6.7] fused bis(indolyl) oxepanes via diastereoselective desymmetrization of bis(indolyl)-cyclohexadienones is presented for the first time. The reaction is highly atom- and step-economic, furnishing sp3-rich functionalized bis(indolyl) derivatives in good to excellent yields with wide substrate scope. The reaction proceeds through Friedel-Crafts alkylation followed by catalyst-controlled selective C-C bond formation/rearrangement. Gram scale synthesis and synthetic utility to generate bis(indolyl) alkaloid-like molecular diversity were also illustrated.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Halder I, Nair AM, Giri S, Volla CMR. Diphenyl Ditelluride: An Unconventional Reducing Agent in the Sulfonylative Cascade of Alkynyl Cyclohexadienones. Org Lett 2023; 25:826-831. [PMID: 36722745 DOI: 10.1021/acs.orglett.2c04367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report a reductive hydrazo-sulfonylative difunctionalization cascade of alkynyl cyclohexadienones employing PhTeTePh as an uncommon reducing agent. Diphenyl ditelluride is a commercially available solid with a good solubility profile in most organic solvents, and this is the first report illustrating it as a reducing agent. The protocol afforded a variety of difunctionalized dihydrochromenones and dihydrobenzofuranones in good yields under relatively mild conditions. The reactions were scalable, and mechanistic studies were conducted to probe the reaction mechanism. Additionally, photophysical studies of the products were carried out, which revealed that they had significant absorption (400-450 nm) and emission (520-570 nm) in the visible region.
Collapse
Affiliation(s)
- Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samyadev Giri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Tang J, Zhang L, Wu W, Yang S, Jiang H. Palladium‐Catalyzed Enantioselective Cyclization of 1,6‐Enynes through Intramolecular Chlorine Transfer as a Novel Strategy for Asymmetric Halopalladation. Chemistry 2022; 28:e202202528. [DOI: 10.1002/chem.202202528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Junlong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Liren Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Patel RK, Chauhan A, Jha P, Kant R, Kumar R. Catalytic Friedel-Crafts Alkylative Desymmetrization of Cyclohexa-2,5-dienones: Access to Linear and Bridged Polycyclic Pyrroles and 3-Arylpyrroles. Org Lett 2022; 24:5422-5427. [PMID: 35852460 DOI: 10.1021/acs.orglett.2c02135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic [3 + 2]-cycloaddition/Friedel-Crafts alkylative desymmetrization strategy has been developed for the stereoselective construction of linear and bridged polycyclic pyrroles from alkynylcyclohexa-2,5-dienones. This strategy was further explored for the synthesis of 3-arylpyrroles under Brønsted acid catalysis. Reaction is highly chemo-, regio-, and stereoselective and is compatible with wide range of functionalized cyclohexa-2,5-dienones/pyrroles (>51 examples, ≤98% yields). Gram-scale synthesis and synthetic utility of the products have also been demonstrated to showcase the robustness of present method.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| |
Collapse
|
12
|
Nair AM, Halder I, Volla CMR. A metal-free four-component sulfonylation, Giese cyclization, selenylation cascade via insertion of sulfur dioxide. Chem Commun (Camb) 2022; 58:6950-6953. [PMID: 35642582 DOI: 10.1039/d2cc02315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We hereby report a highly regio- and diastereoselective arylsulfonylation-radical cyclization-selenylation cascade of alkynyl cyclohexadienones for the facile synthesis of highly functionalized dihydrochromenones. The protocol utilizes aryldiazonium salts as aryl partners and DABSO as a benign SO2 source and also as a redox mediator. Additionally, we also developed a visible light mediated protocol wherein diaryliodonium salts were used as the aryl partners at room temperature.
Collapse
Affiliation(s)
- Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
13
|
Munakala A, Nallamilli T, Nanubolu JB, Chegondi R. Steric- and Electronic-Controlled Intramolecular [2 + 2]-Cycloaddition of Cyclohexadienone-Containing 1,7-Enynes. Org Lett 2022; 24:892-896. [PMID: 35023756 DOI: 10.1021/acs.orglett.1c04232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we have developed the silver-catalyzed electronic- and steric-controlled intramolecular formal [2 + 2]-cycloaddition of alkyne-tethered cyclohexadienones. Substrates with electron-rich alkynes and a less hindered quaternary carbon center afford tricyclic fused cyclobutenes through 1,7-enyne cyclization. In contrast, the formation of dihydrofurans was observed from electron-deficient alkynes via proton abstraction/C-O bond cleavage. The synthetic potential of this method was also broadened with a gram-scale reaction and various transformations on cyclobutene.
Collapse
Affiliation(s)
- Anandarao Munakala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tarun Nallamilli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Shukla RK, Chaturvedi AK, Volla CMR. Catalytic Cascade Cyclization and Regioselective Hydroheteroarylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atul K. Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Dong M, Wang D, Tong X. PhI(OAc) 2-Mediated Dihalogenative Cyclization of 1,6-Enyne with Lithium Halide. Org Lett 2021; 23:3588-3592. [PMID: 33899488 DOI: 10.1021/acs.orglett.1c00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dihalogenative cyclization of 1,6-enyne with the assistance of PhI(OAc)2 and lithium halide is presented. A plausible radical mechanism is proposed, which consists of addition of halogen radical to alkene, 5-exo-dig radical cyclization of enyne and halogenation via radical coupling. The alkenyl- and alkyl-halide groups in the resulted pyrrolidine products have been demonstrated to be facile handles for further transformations.
Collapse
Affiliation(s)
- Ming Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
17
|
Nair AM, Halder I, Sharma R, Volla CMR. Water Mediated Rearrangement of Alkynyl Cyclohexadienones: Access to meta-Alkenylated Phenols. Org Lett 2021; 23:1840-1845. [DOI: 10.1021/acs.orglett.1c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ritu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Yang Y, Jiang K, Zhu H, Yin B. Synthesis of Highly Conjugated Functionalized 2-Pyridones by Palladium-Catalyzed Aerobic Oxidative Dicarbonation Reactions of N-(Furan-2-ylmethyl) Alkyne Amides and Alkenes as Coupling Partners. J Org Chem 2021; 86:2748-2759. [PMID: 33459019 DOI: 10.1021/acs.joc.0c02730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild, step-economical method for the synthesis of highly conjugated functionalized 2-pyridones from N-(furan-2-ylmethyl) alkyne amides is reported. This method involves Pd-catalyzed aerobic oxidative dicarbonation reactions of alkynes with carbon nucleophiles of a furan ring and an acrylate or styrene as coupling partners. The UV-vis absorption spectra of some of the 2-pyridones indicated that they absorbed shortwave radiation, suggesting their potential utility for filtration of such radiation.
Collapse
Affiliation(s)
- Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hua Zhu
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Shukla RK, Chaturvedi AK, Pal S, Volla CMR. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes Triggered by trans-Acetoxypalladation of Alkynes. Org Lett 2021; 23:1440-1444. [DOI: 10.1021/acs.orglett.1c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atul K. Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subir Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Odagi M, Okuda K, Ishizuka H, Adachi K, Nagasawa K. Synthesis of Spiroguanidine Derivatives by Dearomative Oxidative Cyclization using Hypervalent Iodine Reagent. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuma Okuda
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Hayate Ishizuka
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kanna Adachi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| |
Collapse
|