1
|
Puglisi R, Cavallaro A, Pappalardo A, Petroselli M, Santonocito R, Trusso Sfrazzetto G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024; 29:3714. [PMID: 39125116 PMCID: PMC11314322 DOI: 10.3390/molecules29153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain;
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Puglisi R, Santonocito R, Pappalardo A, Trusso Sfrazzetto G. Smart Sensing of Nerve Agents. Chempluschem 2024; 89:e202400098. [PMID: 38647287 DOI: 10.1002/cplu.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The recent international scenario highlights the importance to protect human health and environmental quality from toxic compounds. In this context, organophosphorous (OP) Nerve Agents (NAs) have received particular attention, due to their use in terrorist attacks. Classical instrumental detection techniques are sensitive and selective, but they cannot be used in real field due to the high cost, specialized personnel requested and huge size. For these reasons, the development of practical, easy and fast detection methods (smart methods) is the future of this field. Indeed, starting from initial sensing research, based on optical and/or electrical sensors, today the development and use of smart strategies to detect NAs is the current state of the art. This review summarizes the smart strategies to detect NAs, highlighting some important parameters, such as linearity, limit of detection and selectivity. Furthermore, some critical comments of the future on this field, and in particular, the problems to be solved before a real application of these methods, are provided.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
3
|
Santonocito R, Puglisi R, Cavallaro A, Pappalardo A, Trusso Sfrazzetto G. Cortisol sensing by optical sensors. Analyst 2024; 149:989-1001. [PMID: 38226461 DOI: 10.1039/d3an01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels is extremely important for controlling the stress levels. For this reason, it has important medical applications. Common analytical methods (HPLC, GC-MS) cannot be used in real life due to the bulkiness of the instruments and the necessity of specialized operators. Molecular probes solve this problem. This review aims to provide a description of recent developments in this field, focusing on the analytical aspects and the possibility to obtain real practical devices from these molecular probes.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
4
|
Puglisi R, Santonocito R, Butera E, Mendola GL, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Detection of a Sub-ppm Nerve Agent Simulant by a Smartphone Tool. ACS OMEGA 2023; 8:38038-38044. [PMID: 37867699 PMCID: PMC10586250 DOI: 10.1021/acsomega.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023]
Abstract
The widespread use of smartphones and related tools is extending their applications in several fields. Herein, we report a reusable smartphone coupled portable detection system for the sensing of sub-ppm level of a nerve agent mimic (dimethylmethylphosphonate) in the gas phase. The detection system is based on multiple hydrogen-bond interactions of the vapor analyte with an ad-hoc functionalized Bodipy chromophore scaffold. The multitopic approach used for the molecular recognition of DMMP leads to the highest binding constant values, high selectivity, and low limits of detection.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Ester Butera
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Giulia Lorenza Mendola
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| |
Collapse
|
5
|
Gabryel-Skrodzka M, Nowak M, Grajewski J, Jastrząb R. Biocoordination reactions in copper(II) ions and phosphocholine systems including pyrimidine nucleosides and nucleotides. Sci Rep 2023; 13:10787. [PMID: 37402775 DOI: 10.1038/s41598-023-37986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The complexation reactions of phosphocholine and pyrimidine nucleosides as well as nucleotides with copper(II) ions were studied in the water system. Using potentiometric methods and computer calculations, the stability constants of the species were determined. Using spectroscopic methods such as UV-vis, EPR, 13C NMR, 31P NMR, FT-IR and CD, the coordination mode was established for complexes created in pH range 2.5-11.0. These studies will lead to a better understanding the role of copper(II) ions in living organisms and explain the interactions between them and the studied bioligands. The differences and similarities between nucleosides and nucleotides in the studied systems were also described, which testify to the significant influence of phosphate groups on the processes of metal ion complexation and interactions between ligands.
Collapse
Affiliation(s)
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Chiacchio MA, Legnani L, Fassi EMA, Roda G, Grazioso G. Development of AMBER Parameters for Molecular Simulations of Selected Boron-Based Covalent Ligands. Molecules 2023; 28:molecules28062866. [PMID: 36985837 PMCID: PMC10057150 DOI: 10.3390/molecules28062866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/β-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
7
|
Santonocito R, Tuccitto N, Pappalardo A, Trusso Sfrazzetto G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022; 27:7503. [PMID: 36364331 PMCID: PMC9654496 DOI: 10.3390/molecules27217503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology—CSGI, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| |
Collapse
|
8
|
Legnani L, Giofré SV, Iannazzo D, Celesti C, Veltri L, Chiacchio MA. Chemoselective Oxidation of Isoxazolidines with Ruthenium Tetroxide: A Successful Intertwining of Combined Theoretical and Experimental Data. Molecules 2022; 27:molecules27175390. [PMID: 36080160 PMCID: PMC9478963 DOI: 10.3390/molecules27175390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The direct oxidation reaction of isoxazolidines plays an important role in organic chemistry, leading to the synthesis of biologically active compounds. In this paper, we report a computational mechanistic study of RuO4-catalyzed oxidation of differently N-substituted isoxazolidines 1a–c. Attention was focused on the endo/exo oxidation selectivity. For all the investigated compounds, the exo attack is preferred to the endo one, showing exo percentages growing in parallel with the stability order of transient carbocations found along the reaction pathway. The study has been supported by experimental data that nicely confirm the modeling results.
Collapse
Affiliation(s)
- Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Salvatore V. Giofré
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D’Alcontres, 98166 Messina, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy
| | - Consuelo Celesti
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Lucia Veltri
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Pietro Bucci 12/C, 87036 Aracavacata di Rende, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
9
|
Tuccitto N, Catania G, Pappalardo A, Trusso Sfrazzetto G. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach. Chemistry 2021; 27:13715-13718. [PMID: 34414611 PMCID: PMC8518932 DOI: 10.1002/chem.202102094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 12/18/2022]
Abstract
The supramolecular detection by image analysis of a simulant chemical warfare agent on a solid device containing a selective molecular sensor based on a BODIPY scaffold is reported. The recognition properties were investigated in solution, demonstrating high affinity (log K 6.60) and sensitivity (LOD 10 ppt). A test strip also confirmed the sensing properties in gas phase. Image analysis of the solid device allows quantitative information about the simulant to be obtained, recovering the sensor almost 5 times and thus confirming the goal of the supramolecular approach.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- Laboratory for Molecular Surfaces and Nanotechnology – CSGI95125CataniaItaly
| | - Gaetano Catania
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
| | - Andrea Pappalardo
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| |
Collapse
|
10
|
Butera E, Zammataro A, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Sensing of Chemical Warfare Agents. Chempluschem 2021; 86:681-695. [PMID: 33881227 DOI: 10.1002/cplu.202100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the "covalent approach", in which the sensor reacts with the analyte, or on the "supramolecular approach", which involves the formation of non-covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi-topic sensors, v) nanosensors. It is shown how the supramolecular non-covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules.
Collapse
Affiliation(s)
- Ester Butera
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Agatino Zammataro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
11
|
Abstract
Three new chiral Mn macrocycle catalysts containing 20 or 40 atoms in the macrocycle were synthetized and tested in the enantioselective epoxidation of cis-β-ethyl-styrene and 1,2-dihydronathalene. The effect of the presence of a binaphtol (BINOL) compound in the catalyst backbone has been evaluated, including by Density Functional Theory (DFT) calculations.
Collapse
|
12
|
Fraschetti C, Letzel MC, Paletta M, Mattay J, Crestoni ME, Chiavarino B, Filippi A. Unprotected Galactosamine as a Dynamic Key for a Cyclochiral Lock. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:736-743. [PMID: 33499589 PMCID: PMC7944569 DOI: 10.1021/jasms.0c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The discrimination of d-galactosamine (G), representative of the amino-sugar class of compounds, has been probed through nano-ESI-FT-ICR mass spectrometry by isolating the relevant [C·H·G]+ proton-bound complexes with the enantiomers of the cyclochiral resorcin[4]arene C and allowing them to react toward three primary amines (B = EtNH2, iPrNH2, and (R)- and (S)-sBuNH2). The system under investigation presents several features that help to unveil the behavior of unprotected G in such a supramolecular architecture: (i) the hydrophobic derivatization of the C convex side forces the polar guest G to be coordinated by the cyclochiral concave region; (ii) protonated d-galactosamine exists as an anomeric mixture, dynamically interconverting throughout the experimental time-window; and (iii) different basicities of B allow the experiment to subtly tune the reactivity of the [C·H·G]+ complexes. Three [C·H·G]+ aggregate-types were found to exist, differing in both their origin and reactivity. The most reactive adducts ([C·H·G]ESI+), generated in the electrospray environment, undergo a G-to-B ligand exchange in competition with a partial isomerization to the unreactive [C·H·G]GAS+-type complexes. Finally, the poorly reactive [C·H·G]SOL+ aggregates are formed in solution over an hours-long time scale. A cyclochirality effect on the reactivity was found to depend on the considered [C·H·G]+ aggregate-type.
Collapse
Affiliation(s)
- Caterina Fraschetti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Matthias C. Letzel
- Organisch-Chemisches
Institut der Westf. Wilhelms Abt. Massenspektrometrie, Westfälische Wilhelms-Universität Münster, Room 252a, Corrensstraße 40, 48149 Münster, Germany
| | - Marlene Paletta
- Department
of Chemistry, Bielefeld University, P. O. Box 100131, D-33501 Bielefeld, Germany
| | - Jochen Mattay
- Department
of Chemistry, Bielefeld University, P. O. Box 100131, D-33501 Bielefeld, Germany
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonello Filippi
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
13
|
Gangemi CMA, Rimkaite U, Pappalardo A, Trusso Sfrazzetto G. Light-up photoluminescence sensing of a nerve agent simulant by a bis-porphyrin–salen–UO 2 complex. RSC Adv 2021; 11:13047-13050. [PMID: 35423859 PMCID: PMC8697308 DOI: 10.1039/d1ra01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
A luminescent bis-porphyrin–salen–UO2 complex, showing a significant fluorescence light-up response upon reacting with DMMP (a simulant of nerve agents), is reported. The fluorescence change of this complex by excitation at 365 nm can be clearly observed with the naked eye, and this complex was successfully employed to construct a test paper to detect nerve agents. The exposure of a nerve agent simulant to a fluorogenic sensor results in a significant increase in fluorescence response, allowing the construction of a paper test for the naked-eye detection of DMMP.![]()
Collapse
Affiliation(s)
| | - Ugne Rimkaite
- Faculty of Chemistry and Geosciences
- University of Vilnius
- Vilnius
- Lithuania
| | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
- INSTM Udr of Catania
| | | |
Collapse
|
14
|
Tuccitto N, Spitaleri L, Li Destri G, Pappalardo A, Gulino A, Trusso Sfrazzetto G. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles. Molecules 2020; 25:molecules25235731. [PMID: 33291853 PMCID: PMC7730470 DOI: 10.3390/molecules25235731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported. This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP, a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse the sensor.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| | - Luca Spitaleri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Li Destri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonino Gulino
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| |
Collapse
|
15
|
Pappalardo A, Gangemi CM, Toscano RM, Sfrazzetto GT. A New Fluorescent Salen-uranyl Sensor for the Sub-ppm Detection of Chemical Warfare Agents. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200930150313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to
prevent the lethal effects of a terroristic chemical attack. For this reason, the development of
efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response
ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent
sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and
its application for the detection of sub-ppm levels of CWAs is reported. Detection properties
were evaluated by fluorescence measurements and selectivity tests demonstrated the strong
affinity for CWAs.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Chiara M.A. Gangemi
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Rosa Maria Toscano
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|
16
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
17
|
Legnani L, Iannazzo D, Pistone A, Celesti C, Giofrè S, Romeo R, Di Pietro A, Visalli G, Fresta M, Bottino P, Blanco I, Chiacchio MA. Functionalized polyhedral oligosilsesquioxane (POSS) based composites for bone tissue engineering: synthesis, computational and biological studies. RSC Adv 2020; 10:11325-11334. [PMID: 35495324 PMCID: PMC9050444 DOI: 10.1039/d0ra01636e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Functionalized polyhedral oligosilsesquioxanes (POSS) containing an isoxazolidine nucleus have been synthesized by microwave assisted 1,3-dipolar cycloaddition of N-methyl-C-alkoxycarbonyl nitrone 1 with POSS containing olefin moieties. The results of cycloaddition processes were rationalized by computational studies at the DFT level. The covalent conjugation of chitosan with the cycloadduct 3a leads to composite material CS-POSS 7 which was gelified using genipin as cross linking agent. The suitability of the system for bone tissue engineering purposes was evaluated by in vitro drug release studies using ketoprofen as a model drug and cytotoxicity assays performed on human fetal osteoblastic cells. The preliminary biological tests showed the lack of cytotoxicity of the hybrid material and suggest its potential role in bone tissue engineering applications.
Collapse
Affiliation(s)
- Laura Legnani
- Dipartimento di Scienze del Farmaco, Università di Catania Viale A. Doria 6 95125 Catania Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina Contrada Di Dio 98166 Messina Italy
| | - Alessandro Pistone
- Dipartimento di Ingegneria, Università di Messina Contrada Di Dio 98166 Messina Italy
| | - Consuelo Celesti
- Dipartimento di Ingegneria, Università di Messina Contrada Di Dio 98166 Messina Italy
| | - Salvatore Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina Via S.S. Annunziata 98168 Messina Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina Via S.S. Annunziata 98168 Messina Italy
| | - Angela Di Pietro
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Via Consolare Valeria 1 98100 Messina Italy
| | - Giuseppa Visalli
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Via Consolare Valeria 1 98100 Messina Italy
| | - Monica Fresta
- Dipartimento di Scienze del Farmaco, Università di Catania Viale A. Doria 6 95125 Catania Italy
| | - Paola Bottino
- Dipartimento di Scienze del Farmaco, Università di Catania Viale A. Doria 6 95125 Catania Italy
| | - Ignazio Blanco
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania Viale A. Doria 6 95125 Catania Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco, Università di Catania Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|