1
|
Mehdidoust S, Rajai-Daryasarei S, Hosseini SS, Rominger F, Bijanzadeh HR, Balalaie S, Ramezanpour S. Diastereoselective Construction of Spirocyclic Isobenzofurans via a Tandem Michael Addition/5-Exo-dig Cyclization Reaction. J Org Chem 2024; 89:16613-16621. [PMID: 39480012 DOI: 10.1021/acs.joc.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A practical approach for rapid and efficient access to spirocyclic isobenzofurans is described. The reaction proceeds through the cycloaddition of 1,6-ynenone derivatives and 4-nitro-1,3-diarylbutan-1-ones, promoted by Cs2CO3 in the presence of l-proline as a catalyst. The advantages of this reaction include the formation of two C-C bonds and one C-O bond as well as mild reaction conditions. Extended spirocyclic isobenzofurans are obtained with good efficiency and diastereoselectivity under these mild conditions, and this new protocol avoids the use of any transition-metal reagents.
Collapse
Affiliation(s)
- Shaghayegh Mehdidoust
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 15418-49611, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 15418-49611, Iran
| | - S Sina Hosseini
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 15418-49611, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universitat Heidelberg, Im Neuenheimer Feld 271, Heidelberg 69120, Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, P.O. Box 46414-356, Tehran 14115-111, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 15418-49611, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 15418-49611, Iran
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Wang X, Zhao Z, Guo J, Wang J, Zhao J. Synthesis of 3-sulfonylisoindolin-1-ones from olefinic amides and sodium sulfinates via electrooxidative tandem cyclization. Org Biomol Chem 2024; 22:5897-5901. [PMID: 38967547 DOI: 10.1039/d4ob00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Sulfonyl groups are motifs that are widely found in biologically active compounds and drug molecules, many isolated natural products as well as pharmaceuticals contain sulfonyl groups. Herein, we present the synthesis of sulfonyl-substituted isoindolones by a electrochemical oxidative radical cascade cycloaddition reaction of olefinic amides with sodium sulfite under oxidant- and catalyst-free conditions. Various olefinic amides and sodium sulfinates were compatible and gave the desired products in yields up to 99%.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Ziyue Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jiajie Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jijin Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jincan Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
4
|
Visible-light-induced photocatalyst-free intramolecular sp3 C–H oxidation of 2‑alkyl benzamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sun L, Cui J, Nie S, Xie L, Wang Y, Wu L. NIS‐Mediated Intramolecular sp3 C–H Oxidation of 2‐Alkyl‐Substituted Benzamides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Sun
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Jichun Cui
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Shaozhen Nie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Lei Xie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Lingang Wu
- Liaocheng University College of Chemistry and Chemical engineering No. 1, Hunan Road 252000 Liaocheng CHINA
| |
Collapse
|
6
|
China H, Kageyama N, Yatabe H, Takenaga N, Dohi T. Practical Synthesis of 2-Iodosobenzoic Acid (IBA) without Contamination by Hazardous 2-Iodoxybenzoic Acid (IBX) under Mild Conditions. Molecules 2021; 26:1897. [PMID: 33801611 PMCID: PMC8036297 DOI: 10.3390/molecules26071897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
We report a convenient and practical method for the preparation of nonexplosive cyclic hypervalent iodine(III) oxidants as efficient organocatalysts and reagents for various reactions using Oxone® in aqueous solution under mild conditions at room temperature. The thus obtained 2-iodosobenzoic acids (IBAs) could be used as precursors of other cyclic organoiodine(III) derivatives by the solvolytic derivatization of the hydroxy group under mild conditions of 80 °C or lower temperature. These sequential procedures are highly reliable to selectively afford cyclic hypervalent iodine compounds in excellent yields without contamination by hazardous pentavalent iodine(III) compound.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Nami Kageyama
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Hotaka Yatabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| |
Collapse
|
7
|
Hua J, Bian M, Ma T, Yang M, He W, Yang Z, Liu C, Fang Z, Guo K. The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02273j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel sunlight-promoted approach for the selective synthesis of selenated iminoisobenzofurans or isoindolinones via the aerobic O-cyclization or N-cyclization of olefinic amides with diselenides has been developed.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
8
|
Bian M, Hua J, Ma T, Xu J, Cai C, Yang Z, Liu C, He W, Fang Z, Guo K. Continuous-flow electrosynthesis of selenium-substituted iminoisobenzofuran via oxidative cyclization of olefinic amides and diselenides. Org Biomol Chem 2021; 19:3207-3212. [DOI: 10.1039/d1ob00236h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel method for the continuous synthesis of selenated iminoisobenzofurans by cyclization of olefinic amides with diselenides through electrochemical oxidation under metal-free and oxidant-free conditions has been developed.
Collapse
Affiliation(s)
- Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chen Cai
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
9
|
Wu L, Hao Y, Liu Y, Song H, Wang Q. Visible-light-induced dearomative oxamination of indole derivatives and dearomative amidation of phenol derivatives. Chem Commun (Camb) 2020; 56:8436-8439. [DOI: 10.1039/d0cc03506h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a protocol for visible-light-induced dearomative oxamination reactions of indole derivatives to afford functionalized spirocyclic products.
Collapse
Affiliation(s)
- Lingang Wu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Yanan Hao
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| |
Collapse
|