1
|
Vázquez-Villar V, Das C, Swift T, Elies J, Tolosa J, García-Martínez JC, Ruiz A. Oligo(styryl)benzenes liposomal AIE-dots for bioimaging and phototherapy in an in vitro model of prostate cancer. J Colloid Interface Sci 2024; 670:585-598. [PMID: 38776693 DOI: 10.1016/j.jcis.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Whilst the development of advanced organic dots with aggregation-induced emission characteristics (AIE-dots) is being intensively studied, their clinical translation in efficient biotherapeutic devices has yet to be tackled. This study explores the synergistic interplay of oligo(styryl)benzenes (OSBs), potent fluorogens with an increased emission in the aggregate state, and Indocyanine green (ICG) as dual Near Infrared (NIR)-visible fluorescent nanovesicles with efficient reactive oxygen species (ROS) generation capacity for cancer treatment using photodynamic therapy (PDT). The co-loading of OSBs and ICG in different nanovesicles has been thoroughly investigated. The nanovesicles' physicochemical properties were manipulated via molecular engineering by modifying the structural properties of the lipid bilayer and the number of oligo(ethyleneoxide) chains in the OSB structure. Diffusion Ordered Spectroscopy (DOSY) NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the OSB and ICG in the bilayer. The in vitro assessment of these OSB-ICG nanovesicles revealed that the formulations can increase the temperature and generate ROS after photoirradiation, showing for the first time their potential as dual photothermal/photodynamic (PTT/PDT) agents in the treatment of prostate cancer. Our study provides an exciting opportunity to extend the range of applications of OSB derivates to potentiate the toxicity of phototherapy in prostate and other types of cancer.
Collapse
Affiliation(s)
- Víctor Vázquez-Villar
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain
| | - Chandrima Das
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Thomas Swift
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Jacobo Elies
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Juan Tolosa
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain.
| | - Joaquín C García-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain.
| | - Amalia Ruiz
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
2
|
Mita H, Hattori S, Sasaki T, Takamizawa S, Shinozaki K. Assembling of a Water-Soluble N^C^N-Coordinated Pt(II) Complex Aggregate Assisted by Carbon Dioxide in Basic Aqueous Solution. CHEMSUSCHEM 2024; 17:e202301174. [PMID: 37789638 DOI: 10.1002/cssc.202301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
We report an unprecedented result of self-aggregation of [Pt(L1 )Cl] (HL1 =1,3-di(5-carboxy-2-pyridyl)benzene) triggered by CO2 in basic aqueous solution. The color of basic aqueous solution containing [Pt(L1 )Cl] changes from yellow to blue-green during the aggregation resulted from a reaction with CO2 in air. Upon CO2 gas bubbling, strong and broad absorption bands of aggregate assigned to the metal-metal-to-ligand charge-transfer transition appeared at 701 and 1152 nm. Recrystallization of [Pt(L1 )Cl] from Na2 CO3 aqueous solution afforded polymorphic crystals of red and blue-green forms. A single X-ray crystallography revealed that the red form of crystal consists of a Pt-Pt stacked dimer bridged by CO3 2- ion and one of the carboxy groups of L1 is deprotonated. An elemental analysis provided evidence that the blue-green crystal is constructed by linear array consisting of the [Pt(L2 )(CO3 )]3- (HL2 =1,3-di(5-carboxylate-2-pyridyl)benzene) units. The formation process of blue-green aggregate in aqueous solution was monitored through a transient absorption spectrum, and the absorption of aggregates involved in the spectral change were examined by a global analysis. A singular value decomposition and kinetic analysis provide that there are four species resulted from the self-assembling reaction in the solution and the maximal degree of aggregation is at least 32-mer.
Collapse
Affiliation(s)
- Hiroyuki Mita
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Shingo Hattori
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Toshiyuki Sasaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Satoshi Takamizawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kazuteru Shinozaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
3
|
Liu Y, Chen X, Liu X, Guan W, Lu C. Aggregation-induced emission-active micelles: synthesis, characterization, and applications. Chem Soc Rev 2023; 52:1456-1490. [PMID: 36734474 DOI: 10.1039/d2cs01021f] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aggregation-induced emission (AIE)-active micelles are a type of fluorescent functional materials that exhibit enhanced emissions in the aggregated surfactant state. They have received significant interest due to their excellent fluorescence efficiency in the aggregated state, remarkable processability, and solubility. AIE-active micelles can be designed through the self-assembly of amphipathic AIE luminogens (AIEgens) and the encapsulation of non-emissive amphipathic molecules in AIEgens. Currently, a wide range of AIE-active micelles have been constructed, with a significant increase in research interest in this area. A series of advanced techniques has been used to characterize AIE-active micelles, such as cryogenic-electron microscopy (Cryo-EM) and confocal laser scanning microscopy (CLSM). This review provides an overview of the synthesis, characterization, and applications of AIE-active micelles, especially their applications in cell and in vivo imaging, biological and organic compound sensors, anticancer drugs, gene delivery, chemotherapy, photodynamic therapy, and photocatalytic reactions, with a focus on the most recent developments. Based on the synergistic effect of micelles and AIE, it is anticipated that this review will guide the development of innovative and fascinating AIE-active micelle materials with exciting architectures and functions in the future.
Collapse
Affiliation(s)
- Yuhao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoting Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Jing J, Xu G, Zhang HH, Chen XH, Zhang DS, Han LZ, Qi XW, Shi ZF, Zhang XP. Enhanced circularly polarized luminescence in fluoro-substituted N^C^N-coordinating platinum(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes controlled by thermal inputs. Chem Commun (Camb) 2022; 58:8356-8359. [DOI: 10.1039/d2cc02571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe the self-assembly behavior of neutral platinum complexes in toluene. The platinum complexes were seen to form two different types of assemblies depending on the preparation...
Collapse
|
6
|
Ono Y, Hirao T, Haino T. Solvent-directed formation of helically twisted stacking constructs via self-assembly of tris(phenylisoxazolyl)benzene dimers. Org Biomol Chem 2021; 19:7165-7171. [PMID: 34369543 DOI: 10.1039/d1ob01277k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ureido-pyrimidinone (UPy)-appended tris(phenylisoxazolyl)benzenes were synthesized. The UPy moieties of the tris(phenylisoxazolyl)benzenes stably formed self-complementary dimers in solution. The dimers self-assembled to form helically twisted stacking constructs in a process driven by π-π stacking interactions of UPy dimer moieties and dipole-dipole interactions of isoxazole units. Strong association affinity was seen within the stacking constructs compared with the previously reported isoxazole derivatives owing to the auxiliary π-π stacking interaction. Notably, tris(phenylisoxazolyl)benzenes showed an environmentally responsive nature. The absorption bands, emission intensities, and sizes of ensembles depended significantly on the mixing ratio of CHCl3 and methylcyclohexane (MCH). Additionally, sharp on-off switching phenomena were seen in their circular dichroism (CD) and circularly polarized luminescence (CPL) spectra in response to the mixing ratio of CHCl3 and MCH. CD and CPL were activated only at a certain mixing ratio of CHCl3/MCH, thus showing potential for the creation of molecular sensors.
Collapse
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
7
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes possessing chiral hydrophilic TEG chains. Org Biomol Chem 2021; 19:5303-5311. [PMID: 33969859 DOI: 10.1039/d1ob00492a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neutral platinum complexes that possess chiral triethylene glycol (TEG) moieties were synthesized. The platinum complexes formed helically twisted stacked assemblies in chloroform and toluene, which were studied by 1H NMR, UV/vis spectroscopy, and emission spectroscopy. On the other hand, emissive micellar aggregates were observed in a THF/water mixed solvent. Dynamic light scattering (DLS) experiments revealed that micellar aggregates with a diameter (d) of ≈100 nm emitted strong light, whereas the monomeric form and large aggregates (d > 500 nm) did not show luminescence efficiently. Furthermore, the micellar aggregates were twisted chirally, where the twisted direction was determined by the chirality of the TEG moieties. The assemblies were observed to be solvent responsive, which allows for the modulation of the nanostructure by changing the solvent polarity.
Collapse
Affiliation(s)
- Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
8
|
Ono Y, Hirao T, Ikeda T, Haino T. Self-Assembling Behavior and Chiroptical Properties of Carbazole-Cored Phenyl Isoxazolyl Benzenes. J Org Chem 2021; 86:5499-5505. [DOI: 10.1021/acs.joc.0c03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Ikeda
- Department of Chemistry, Faculty of Science, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
9
|
Solid-state spectroscopic properties of dinuclear cyclometalated Pt(II) complexes with different bridging ligands and anions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Hisano N, Hirao T, Haino T. A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin and trinitrofluorenone. Chem Commun (Camb) 2020; 56:7553-7556. [DOI: 10.1039/d0cc02474k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dual redox-responsive supramolecular polymer driven by molecular recognition between bisporphyrin (bisPor) and trinitrofluorenone (TNF) has been developed.
Collapse
Affiliation(s)
- Naoyuki Hisano
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Hiroshima 739-8562
- Japan
| |
Collapse
|