1
|
Preux Y, Jiao W, Eyer LN, Waitaiki-Curry H, Cameron SA, Painter GF, Anderson RJ. Tandem Condensation-Cycloaddition of Propargylic Amines with α-Azido Ketones and β-Alkoxy-γ-Azido Enones. J Org Chem 2024; 89:11631-11640. [PMID: 39081027 DOI: 10.1021/acs.joc.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
α-Azido ketones and their vinylogous relatives β-alkoxy-γ-azido enones are versatile building blocks for constructing diverse heterocyclic products, but are prone to azide decomposition. Here, we report their condensation with propargylic amines and investigate the fate of the intermediate azido-enamine condensation products, both experimentally and theoretically. Efficient intramolecular cycloaddition was observed for electron-poor azide substrates, and a range of diversely substituted [1,2,3]triazolo[1,5-a]pyrazine products is reported. For electron-rich substrates, azide decomposition predominated. Computational modeling of possible pathways from the azido-enamine intermediates revealed two alternative mechanisms for azide decomposition, which were consistent with observed side products.
Collapse
Affiliation(s)
- Yoan Preux
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Lukas N Eyer
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Hemi Waitaiki-Curry
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| |
Collapse
|
2
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
3
|
Xie J, Guo Z, Liu W, Zhang D, He Y, Yang X. Kinetic Resolution of 1,
2‐Diamines
via Organocatalyzed Asymmetric Electrophilic Aminations of Anilines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
| | - Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yu‐Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
4
|
Guo W, Jiang F, Li S, Sun J. Organocatalytic asymmetric azidation of sulfoxonium ylides: mild synthesis of enantioenriched α-azido ketones bearing a labile tertiary stereocenter. Chem Sci 2022; 13:11648-11655. [PMID: 36320381 PMCID: PMC9555749 DOI: 10.1039/d2sc03552a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022] Open
Abstract
Disclosed here is a catalytic asymmetric azidation reaction for the efficient synthesis of α-azido ketones bearing a labile tertiary stereocenter. With a superb chiral squaramide catalyst, a mild asymmetric formal H–N3 insertion of α-carbonyl sulfoxonium ylides proceeded with excellent efficiency and enantioselectivity. This organocatalytic process not only complements the previous α-azidation approaches for the formation of quaternary stereocenters and mostly for 1,3-dicarbonyl compounds, but also has advantages over the well-known metal-catalyzed asymmetric carbene insertion chemistry using α-diazocarbonyl compounds. Detailed mechanistic studies via control reactions and NMR studies provided important insights into the reaction pathway, which features reversible protonation and dynamic kinetic resolution. The curiosity in mechanism also led to the development of a simplified alternative protocol with a cheaper HN3 source. An organocatalytic asymmetric H–N3 insertion of α-carbonyl sulfoxonium ylides has been developed, providing efficient access to α-azido ketones bearing labile tertiary stereocenters and complementing the metal carbene insertion chemistry.![]()
Collapse
Affiliation(s)
- Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
5
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Wang J, He F, Yang X. Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nat Commun 2021; 12:6700. [PMID: 34795297 PMCID: PMC8602376 DOI: 10.1038/s41467-021-27028-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Acyclic quaternary stereocenters are widely present in a series of biologically active natural products and pharmaceuticals. However, development of highly efficient asymmetric catalytic methods for the construction of these privileged motifs represents a longstanding challenge in organic synthesis. Herein, an efficient chiral phosphoric acid catalyzed direct asymmetric addition of α-alkynyl acyclic ketones with allenamides has been developed, furnishing the acyclic all-carbon quaternary stereocenters with excellent regioselectivities and high enantioselectivities. Extensive and detailed experimental mechanistic studies were performed to investigate the mechanism of this reaction. Despite a novel covalent allyl phosphate intermediate was found in these reactions, further studies indicated that a SN2-type mechanism with the ketone nucleophiles is not very possible. Instead, a more plausible mechanism involving the elimination of the allyl phosphate to give the α,β-unsaturated iminium intermediate, which underwent the asymmetric conjugate addition with the enol form of ketone nucleophiles under chiral anion catalysis, was proposed. In virtue of the fruitful functional groups bearing in the chiral products, the diverse derivatizations of the chiral products provided access to a wide array of chiral scaffolds with quaternary stereocenters.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
7
|
Bagheri I, Mohammadi L, Zadsirjan V, Heravi MM. Organocatalyzed Asymmetric Mannich Reaction: An Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202003034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ilnaz Bagheri
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Leila Mohammadi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry School of Science Alzahra University PO. Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
8
|
He F, Wang J, Zhou F, Tao H, Yang X. Regio- and enantioselective amination of acyclic branched α-alkynyl ketones: asymmetric construction of N-containing quaternary stereocenters. Org Chem Front 2021. [DOI: 10.1039/d1qo00720c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Direct regio- and enantioselective amination of acyclic α-branched ketones enabled by the α-alkynyl group.
Collapse
Affiliation(s)
- Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jiawen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Ding PG, Hu XS, Yu JS, Zhou J. Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Org Lett 2020; 22:8578-8583. [DOI: 10.1021/acs.orglett.0c03178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, People’s Republic of China
| |
Collapse
|
10
|
Li G, Liu M, Zou S, Feng X, Lin L. A Bispidine-Based Chiral Amine Catalyst for Asymmetric Mannich Reaction of Ketones with Isatin Ketimines. Org Lett 2020; 22:8708-8713. [PMID: 33074003 DOI: 10.1021/acs.orglett.0c03305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A unique chiral amine organocatalyst with a bispidine structure was found to be efficient for the diastereo- and enantioselective Mannich reaction of isatin ketimines with ketones. A series of 3-substituted 3-amino-2-oxindoles bearing vicinal tertiary and quaternary chiral stereogenic centers were obtained in excellent yields with excellent dr and ee values. The gram-scale synthesis and transformation of the product showed the practicability of this methodology. In addition, a possible transition state model was proposed to explain the origin of the stereoselectivity.
Collapse
Affiliation(s)
- Gonglin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mohuizi Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sijia Zou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Ye X, Pan Y, Chen Y, Yang X. Enantioselective Construction of Sulfur‐Containing Tetrasubstituted Stereocenters via Asymmetric Functionalizations of α‐Sulfanyl Cyclic Ketones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueqian Ye
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongkai Pan
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Yunrong Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
12
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|