1
|
Jat B, Yadav DK, Badsara SS, Sharma S. Recent advances in electrochemical utilization of NHPI esters. Org Biomol Chem 2025; 23:4846-4854. [PMID: 40275742 DOI: 10.1039/d5ob00467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Electrochemical methods employing N-hydroxyphthalimide (NHPI) esters have emerged as powerful tools for sustainable organic synthesis. Derived from abundant and stable alkyl carboxylic acids, NHPI esters enable the generation of alkyl radicals through single-electron transfer (SET) and decarboxylation, facilitating carbon-carbon (C-C) and carbon-heteroatom (C-X) bond formation. These reactions are vital for synthesizing complex molecules used in pharmaceuticals, agrochemicals, and advanced materials, yet traditional approaches often depend on harsh conditions, toxic reagents, or costly metals. This review explores recent progress in electrochemical applications of NHPI esters, highlighting their role in both metal-catalyzed (e.g., Ni, Cr) and metal-free systems.
Collapse
Affiliation(s)
- Bhawana Jat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| | - Dinesh K Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| |
Collapse
|
2
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
3
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
4
|
Dash R, Panda SP, Bhati KS, Sharma S, Murarka S. Electrochemical C-H Alkylation of Azauracils Using N-(Acyloxy)phthalimides. Org Lett 2024; 26:7227-7232. [PMID: 39162265 DOI: 10.1021/acs.orglett.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We present an electrochemical alkylation of azauracils using N-(acyloxy)phthalimides (NHPI esters) as readily available alkyl radical progenitors under metal- and additive-free conditions. Several azauracils are shown to undergo alkylation with an array of NHPI esters (1°, 2°, 3°, and sterically congested), providing the desired products in good to excellent yields. This operationally simple method is robust, scalable, and suitable for both batch and flow setups.
Collapse
Affiliation(s)
- Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Kuldeep Singh Bhati
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
5
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
6
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
7
|
Wang H, Liu R, Sun Q, Xu K. Direct alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. Chem Commun (Camb) 2023; 59:12763-12766. [PMID: 37812023 DOI: 10.1039/d3cc04356h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The metal-free alkylation of N-heterocycles with alkenes has remained a synthetic challenge. We report here the successful implementation of metal-free alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. This protocol provides a mechanistically distinct approach to prepare a variety of C-3 alkylated quinoxalinones that are otherwise quite difficult to synthesize by other means.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ruoyu Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Rosadoni E, Bombonato E, Del Vecchio A, Guariento S, Ronchi P, Bellina F. Direct Decarboxylative C-2 Alkylation of Azoles through Minisci-Type Coupling. J Org Chem 2023; 88:14236-14241. [PMID: 37729603 DOI: 10.1021/acs.joc.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
This note discusses the application of a Minisci-type reaction for the direct alkylation of azoles with carboxylic acids as radical precursors. Different reaction conditions were investigated to achieve high yield of the desired products, focusing on acid strength and solvent screening. Moreover, the reactivity of imidazoles with various carboxylic acids was investigated, showing good yield for most cases. The study reveals the potential of this approach for late-stage functionalization in drug discovery.
Collapse
Affiliation(s)
- Elisabetta Rosadoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elena Bombonato
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Antonio Del Vecchio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Sara Guariento
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Paolo Ronchi
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
9
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Bortnikov EO, Smith BS, Volochnyuk DM, Semenov SN. Stirring-Free Scalable Electrosynthesis Enabled by Alternating Current. Chemistry 2023; 29:e202203825. [PMID: 36594259 DOI: 10.1002/chem.202203825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Alternating current (AC) electrolysis is receiving increased interest as a versatile tool for mild and selective electrochemical transformations. This work demonstrates that AC can enable the concept of a stirring-free electrochemical reactor where the periodic switch of electrode polarity, inherent to AC, provides uniform electrolysis across the whole volume of the reactor. Such design implies a straightforward approach for scaling up electrosynthesis. This was demonstrated on the range of electrochemical transformations performed in three different RVC-packed reactors on up to a 50-mmol scale. Redox-neutral, oxidative, and reductive processes were successfully implemented using the suggested design and the applicable frequency ranges were further investigated for different types of reactions. The advantages of the AC-enabled design - such as the absence of stirring and a maximized surface area of the electrodes - provide the possibility for its universal application both for small-scale screening experimentation and large-scale preparative electrosynthesis without significant optimization needed in between.
Collapse
Affiliation(s)
- Evgeniy O Bortnikov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, 550 E. Orange Street, Tempe, Arizona, 85281, USA
| | | | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| |
Collapse
|
11
|
Laha R, Patel TI, Moschitto MJ. Desulfinative Alkylation of Heteroarenes via an Electrostatic Electron Donor-Acceptor Complex. Org Lett 2022; 24:7394-7399. [PMID: 36194682 DOI: 10.1021/acs.orglett.2c02932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functionalized pyridine and quinoline rings are important components of numerous bioactive molecules and natural products; however, diversification of these rings often requires de novo heterocycle ring synthesis or demanding reaction conditions. We report a method for desulfinative alkylation of pyridine and quinoline N-methoxide salts that operates under both photocatalytic and electrostatic electron donor-acceptor-mediated pathways. Unlike most EDA-mediated processes, this reaction operates in the absence of light and with the desulfination of the donor compound.
Collapse
Affiliation(s)
- Ramkrishna Laha
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Twinkle I Patel
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Matthew J Moschitto
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| |
Collapse
|
12
|
Wang L, Yu J, Duan Z, Jin J, Zhang Y. Cobalt-catalyzed synthesis of aryl ketones and aldehydes from redox-active esters. Org Biomol Chem 2022; 20:6554-6557. [PMID: 35929778 DOI: 10.1039/d2ob01275h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed decarboxylative oxidation of benzylic redox-active esters is described. This protocol efficiently converts secondary or primary aliphatic carboxylic acids into aromatic ketones or aldehydes. A wide range of substrates selectively reacted in good to excellent yields with broad functional group tolerance. Notably, various biologically active molecules could also work well, which indicated the synthetic application of such a methodology.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Jiage Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Zeqing Duan
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Jingrong Jin
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Chen P, Huang PF, Xiong BQ, Huang HW, Tang KW, Liu Y. Visible-Light-Induced Decarboxylative Alkylation/Ring Opening and Esterification of Vinylcyclopropanes. Org Lett 2022; 24:5726-5730. [PMID: 35920748 DOI: 10.1021/acs.orglett.2c02151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced four-component reaction of vinylcyclopropanes, N-(acyloxy)phthalimide esters, N,N-dimethylformamide (DMF), and H2O through an oxidative ring opening of cyclopropane is presented. This procedure provides a new and effective way to construct formate esters. DMF is employed as both a solvent and the source of CHO. This difunctionalization of vinylcyclopropanes shows good functional group tolerance under room temperature. A radical pathway is involved, and carbonyl oxygen of ester originated from water in this transformation.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China.,Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Hua-Wen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| |
Collapse
|
14
|
Bertuzzi G, Ombrosi G, Bandini M. Regio- and Stereoselective Electrochemical Alkylation of Morita-Baylis-Hillman Adducts. Org Lett 2022; 24:4354-4359. [PMID: 35700274 PMCID: PMC9237826 DOI: 10.1021/acs.orglett.2c01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/03/2022]
Abstract
Electrosynthesis is effectively employed in a general regio- and stereoselective alkylation of Morita-Baylis-Hillman compounds. The exposition of N-acyloxyphthalimides (redox-active esters) to galvanostatic electroreductive conditions, following the sacrificial-anode strategy, is proved an efficient and practical method to access densely functionalized cinnamate and oxindole derivatives. High yields (up to 80%) and wide functional group tolerance characterized the methodology. A tentative mechanistic sketch is proposed based on dedicated control experiments.
Collapse
Affiliation(s)
- Giulio Bertuzzi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giada Ombrosi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Del Río-Rodríguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernández-Salas JA, Alemán J. General electrochemical Minisci alkylation of N-heteroarenes with alkyl halides. Chem Sci 2022; 13:6512-6518. [PMID: 35756520 PMCID: PMC9172443 DOI: 10.1039/d2sc01799g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have been shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and pieces of electrochemical evidence.
Collapse
Affiliation(s)
| | - Lorena Fragoso-Jarillo
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | | | - M Carmen Maestro
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | - Jose A Fernández-Salas
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid Spain
| |
Collapse
|
16
|
Leleu L, Martzel T, Fall A, Sanselme M, Levacher V, Oudeyer S, Brière JF. Diastereoselective addition of redox active esters to azomethine imines by electrosynthesis. Chem Commun (Camb) 2022; 58:6100-6103. [PMID: 35503100 DOI: 10.1039/d2cc01795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thanks to metal- and catalyst-free electrochemical conditions in an undivided cell, a series of readily available redox-active N-(acyloxy)phthalimide esters led to an efficient and highly stereoselective addition (85 : 15 to 95 : 5 dr) of putative radical species to chiral (racemic and enantioenriched) C5-substituted azomethine imines to provide an array of 31 polyaminated hydrazine derivatives as a single diastereoisomer.
Collapse
Affiliation(s)
- Ludovic Leleu
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Thomas Martzel
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Arona Fall
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Morgane Sanselme
- Laboratoire SMS - EA3233, Normandie Univ-University of Rouen, France
| | - Vincent Levacher
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Sylvain Oudeyer
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | | |
Collapse
|
17
|
Wang K, Liu X, Yang S, Tian Y, Zhou M, Zhou J, Jia X, Li B, Liu S, Chen J. In Situ Alkyl Radical Recycling-Driven Decoupled Electrophotochemical Deamination. Org Lett 2022; 24:3471-3476. [PMID: 35546086 DOI: 10.1021/acs.orglett.2c01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular electrophotocatalysis has emerged as a powerful strategy for the development of sustainable synthetic protocols. With the proof-of-concept, we exploited a versatile electrophotocatalytic deaminative alkylation approach. Mechanistic investigation indicated that in situ recycling of the alkyl radicals was the key point. Notably, ligand modification and late-stage functionalization of pharmaceuticals were also established, highlighting its feasibility in practical utilization.
Collapse
Affiliation(s)
- Kui Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Xiaoyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Siyu Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yan Tian
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Baoying Li
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
18
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
19
|
Fang Y, Xu D, Yu Y, Tang R, Dai S, Wang Z, Zhang W. Controlled Synthesis of β‐keto Sulfones and Vinyl Sulfones under Electrochemical Oxidation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Fang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Rumeng Tang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Shuaishuai Dai
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Zhenghua Wang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
20
|
Electrochemically promoted decarboxylative borylation of alkyl N-hydroxyphthalimide esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
22
|
Claraz A, Allain C, Masson G. Electroreductive Cross-Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of Gem-Difluoroalkenes. Chemistry 2021; 28:e202103337. [PMID: 34761845 DOI: 10.1002/chem.202103337] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Abstract
An electroreductive access to gem-difluoroalkenes has been developed through the decarboxylative/defluorinative coupling of N-hydroxyphtalimides esters and α-trifluoromethyl alkenes. The electrolysis is performed under very simple reaction conditions in an undivided cell using cheap carbon graphite electrodes. This metal-free transformation features broad scope with good to excellent yields. Tertiary, secondary as well as primary alkyl radicals could be easily introduced. α-aminoacids L-aspartic and L-glutamic acid-derived redox active esters were good reactive partners furnishing potentially relevant gem-difluoroalkenes. In addition, it has been demonstrated that our electrosynthetic approach toward the synthesis of gem-difluoroalkenes could use an easily prepared Kratitsky salt as alkyl radical precursor via a deaminative/defluorinative carbofunctionalization of trifluoromethylstyrene.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
23
|
Zhang F, Wang Y, Wang Y, Pan Y. Electrochemical Deoxygenative Thiolation of Preactivated Alcohols and Ketones. Org Lett 2021; 23:7524-7528. [PMID: 34519513 DOI: 10.1021/acs.orglett.1c02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work describes an electrochemically promoted nickel-catalyzed deoxygenative thiolation of alcohols and ketones under mild conditions. Excellent substrate tolerance and good chemical yields can be achieved by graphene/nickel foam electrodes in an undivided cell. Further study to gain mechanistic insight into this electrochemical cross-coupling has been carried out.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Choi J, Laudadio G, Godineau E, Baran PS. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. J Am Chem Soc 2021; 143:11927-11933. [PMID: 34318659 PMCID: PMC8721863 DOI: 10.1021/jacs.1c05278] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Collapse
Affiliation(s)
- Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. Electrochemical Nozaki-Hiyama-Kishi Coupling: Scope, Applications, and Mechanism. J Am Chem Soc 2021; 143:9478-9488. [PMID: 34128671 DOI: 10.1021/jacs.1c03007] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David E Hill
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Hao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brendon J McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Julien C Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Donna G Blackmond
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
27
|
Zhang W, Hong N, Song L, Fu N. Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. CHEM REC 2021; 21:2574-2584. [PMID: 33835697 DOI: 10.1002/tcr.202100025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Electroorganic synthesis has recently become a rapidly blossoming research area within the organic synthesis community. It should be noted that electrochemical reaction is always a balanced reaction system with two half-cell reactions-oxidation and reduction. Most electrochemical strategies, however, typically focus on one of the two sides for the desired transformations. Paired electrolysis has two desirable half reactions running simultaneously, thus maximizing the overall margin of atom and energy economy. Meanwhile, the spatial separation between oxidation and reduction is the essential feature of electrochemistry, offering unique opportunities for the development of redox-neutral reactions that would otherwise be challenging to accomplish in a conventional reaction flask setting. This review discusses the most recent illustrative examples of paired electrolysis with special emphasis on sequential and convergent processes.
Collapse
Affiliation(s)
- Wenzhao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianmin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Song
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Mitsudo K. Electro-Oxidative Coupling Reactions Leading to π-Conjugated Compounds. CHEM REC 2021; 21:2269-2276. [PMID: 33735536 DOI: 10.1002/tcr.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Electrochemical reactions are rapidly gaining attention today as a powerful and environmentally benign reaction processes for organic synthesis. We found that the electro-oxidation of palladium acetate afforded cationic palladium species and thus-generated cationic Pd species were efficient mediators for electro-oxidative coupling reactions. Homo-coupling of arylboronic acids and terminal alkynes proceeded efficiently to afford biaryls and butadiyne, respectively. Cross-coupling reactions between terminal alkynes and arylboronic acids were also achieved with the use of a Ag anode. As an advantage of electrochemical reactions, we developed a sequential reaction system switched between oxidative and neutral conditions by the on/off application of electricity, and several π-extended butadiynes were obtained in one-sequence by the system. Electrochemical intramolecular C-S coupling for the synthesis of thienoacene was also developed. The use of Bu4 NBr as a halogen mediator was essential for the reaction.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
29
|
Parida SK, Hota SK, Kumar R, Murarka S. Late‐Stage Alkylation of Heterocycles Using
N
‐(Acyloxy)phthalimides. Chem Asian J 2021; 16:879-889. [DOI: 10.1002/asia.202100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Raushan Kumar
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology Jodhpur Karwar 342037 Rajasthan India
| |
Collapse
|
30
|
Wang D, Wan Z, Zhang H, Lei A. Electrochemical Oxidative Functionalization of Arylalkynes: Access to α,α‐Dibromo Aryl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Wang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Zhaohua Wan
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
31
|
Ramadoss V, Zheng Y, Shao X, Tian L, Wang Y. Advances in Electrochemical Decarboxylative Transformation Reactions. Chemistry 2021; 27:3213-3228. [PMID: 32633436 DOI: 10.1002/chem.202001764] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 12/26/2022]
Abstract
Owing to their non-toxic, stable, inexpensive properties, carboxylic acids are considered as environmentally benign alternatives as coupling partners in various organic transformations. Electrochemical mediated decarboxylation of carboxylic acid has emerged as a new and efficient methodology for the construction of carbon-carbon or carbon-heteroatom bonds. Compared with transition-metal catalysis and photoredox catalysis, electro-organic decarboxylative transformations are considered as a green and sustainable protocol due to the absence of chemical oxidants and strong bases. Further, it exhibits good tolerance with various functional groups. In this Minireview, we summarize the recent advances and discoveries on the electrochemical decarboxylative transformations on C-C and C-heteroatoms bond formations.
Collapse
Affiliation(s)
- Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoqing Shao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
32
|
Hu X, Chen X, Li B, He G, Chen G. Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C-H Alkylations. Org Lett 2021; 23:716-721. [PMID: 33416330 DOI: 10.1021/acs.orglett.0c03940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzyme-catalyzed radical-mediated C-H functionalization reactions allow nature to create natural products of unusual three-dimensional structures from simple linear peptide precursors. In comparison, chemist's ability to harness radical C-H functionalization reactions for synthesis of complex peptides remains limited. In this work, new methods have been developed to construct peptide macrocycles via radical-mediated intramolecular C-H alkylation reactions under photoredox catalysis. Linear peptide precursors equipped with a C-terminal N-(acyloxy)phthalimide ester can cyclize with the α C-H bond of N-terminal glycine or aryl C-H bond of N-heteroarene capping units in high yield and selectivity under mild conditions. The strategy uses the C-H cyclization step to incorporate lysine, homolysine, and various heteroarene-derived amino acid linchpins into peptide macrocycles, enabling convergent and flexible synthesis of complex peptide macrocycles from simple building blocks.
Collapse
Affiliation(s)
- Xiafei Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangxiang Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Yang Z, Yu Y, Lai L, Zhou L, Ye K, Chen FE. Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
35
|
Meng W, Xu K, Guo B, Zeng C. Recent Advances in Minisci Reactions under Electrochemical Conditions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Tian Q, Zhang J, Xu L, Wei Y. Synthesis of quinazolin-4(3H)-ones via electrochemical decarboxylative cyclization of α‑keto acids with 2-aminobenzamides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Zhao F, Meng N, Sun T, Wen J, Zhao X, Wei W. Metal-free electrochemical synthesis of α-ketoamides via decarboxylative coupling of α-keto acids with isocyanides and water. Org Chem Front 2021. [DOI: 10.1039/d1qo01351c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A mild and convenient electrochemical protocol has been developed for the preparation of α-ketoamides via a decarboxylative coupling reaction of α-keto acids with isocyanides and water.
Collapse
Affiliation(s)
- Feng Zhao
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Na Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Sun
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Jiangwei Wen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| |
Collapse
|
38
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
39
|
Affiliation(s)
- Shi-Hui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Zhong Y, Feng Q, Wang X, Chen J, Cai W, Tong R. Functionalized Polyesters via Stereoselective Electrochemical Ring-Opening Polymerization of O-Carboxyanhydrides. ACS Macro Lett 2020; 9:1114-1118. [PMID: 35653202 DOI: 10.1021/acsmacrolett.0c00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ring-opening polymerization is used to prepare polyesters with precisely controlled molecular weights, molecular weight distributions, and tacticities. Herein, we report a Co/Zn catalytic system that can be activated by an electrical current to mediate efficient ring-opening polymerization of enantiopure O-carboxyanhydrides, allowing for the synthesis of isotactic functionalized polyesters with high molecular weights (>140 kDa) and narrow molecular weight distributions (Mw/Mn < 1.1). We also demonstrate that these catalysts can be used for stereoselective ring-opening polymerization of racemic O-carboxyanhydrides to synthesize syndiotactic or stereoblock copolymers with different glass transition temperatures compared with their atactic counterparts.
Collapse
Affiliation(s)
- Yongliang Zhong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Quanyou Feng
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.,Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jia Chen
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 400 Stanger Street, Blacksburg, Virginia 24061, United States
| | - Wenjun Cai
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 400 Stanger Street, Blacksburg, Virginia 24061, United States
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| |
Collapse
|
41
|
Wang HY, Zhong LJ, Lv GF, Li Y, Li JH. Photocatalytic dual decarboxylative alkenylation mediated by triphenylphosphine and sodium iodide. Org Biomol Chem 2020; 18:5589-5593. [PMID: 32677630 DOI: 10.1039/d0ob01242d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An efficient photocatalytic dual decarboxylative alkenylation of α,β-unsaturated carboxylic acids and alkyl N-hydroxyphthalimide (NHP) esters mediated by triphenylphosphine and sodium iodide has been developed. This protocol proceeds under 456-nanometer irradiation by visible blue light in the absence of transition metals or organic dye based photoredox catalysts. The reaction is successfully applied to a wide range of redox-active esters derived from aliphatic carboxylic acids (1°, 2° and 3°) and α-amino acids, enabling transformations of diverse α,β-unsaturated carboxylic acids to α,β-alkylated styrenes with high efficiency and excellent selectivity under mild conditions.
Collapse
Affiliation(s)
- Hong-Yu Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | | | | | | | | |
Collapse
|
42
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
43
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
44
|
Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Electrochemical Synthesis of Thienoacene Derivatives: Transition‐Metal‐Free Dehydrogenative C−S Coupling Promoted by a Halogen Mediator. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Ren Matsuo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Toki Yonezawa
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Haruka Inoue
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Hiroki Mandai
- Department of Medical Technology Gifu University of Medical Science 4-3-3 Nijigaoka, Kani Gifu 5 09-0293 Japan
| | - Seiji Suga
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
45
|
Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Electrochemical Synthesis of Thienoacene Derivatives: Transition‐Metal‐Free Dehydrogenative C−S Coupling Promoted by a Halogen Mediator. Angew Chem Int Ed Engl 2020; 59:7803-7807. [DOI: 10.1002/anie.202001149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Ren Matsuo
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Toki Yonezawa
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Haruka Inoue
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Hiroki Mandai
- Department of Medical Technology Gifu University of Medical Science 4-3-3 Nijigaoka, Kani Gifu 5 09-0293 Japan
| | - Seiji Suga
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
46
|
N-(Alkoxy)- and N-(acyloxy)phthalimides in organic synthesis: free radical synthetic approaches and applications (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02618-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Niu K, Song L, Hao Y, Liu Y, Wang Q. Electrochemical decarboxylative C3 alkylation of quinoxalin-2(1H)-ones with N-hydroxyphthalimide esters. Chem Commun (Camb) 2020; 56:11673-11676. [DOI: 10.1039/d0cc05391k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemical decarboxylative C3 alkylation of a wide range of quinoxalin-2(1H)-ones under metal- and additive-free conditions was reported.
Collapse
Affiliation(s)
- Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Lingyun Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yanke Hao
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|