1
|
Zhang N, Chen Q, Yang Y, Zhu H, Sun H, Zhang C, Li J, Liu H, Duan H. One Stone, Two Birds: In Situ Formed Single-Ion Conductor To Enhance Water Stability of Lithium Garnet and Uniformity of Lithium Deposition during Electrolytic Lithium Extraction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377117 DOI: 10.1021/acsami.5c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
With the rising demand for lithium metal, the electrochemical lithium extraction method utilizing solid oxide electrolytes has garnered significant attention. However, due to the inevitable Li+/H+ exchange between the solid electrolyte and water, the lithium extraction rate is constrained by the electrochemical performance of the solid electrolyte. Furthermore, for the potential direct application of the extracted lithium in lithium metal batteries, the uniformity of the extracted anode material is crucial. To this end, a surface modification method utilizing poly(acrylamide-2-methyl-1-propane-sulfonate) (PAMPS) and PAMPSLi is implemented on a typical solid electrolyte selective membrane, Li6.5La3Zr1.5Ta0.5O12 (LLZTO), and polypropylene separator. The in situ formed PAMPSLi coating layer eliminates Li2CO3 from the surface of LLZTO, enhances water stability, and maintains a high ionic conductivity of 0.78 mS cm-1. The modified polypropylene separator enhances the uniformity of deposited lithium by increasing the lithium transference number to 0.66 and forming a stable solid electrolyte interphase (SEI). Consequently, the lithium extraction system can work stably under a current density of 0.10 mA cm-1 for 27 h, and the products can be directly integrated into lithium batteries. This work presents a practical approach to the sustainable utilization of lithium resources and the development of high-performance lithium batteries.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiwen Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yu Yang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haidong Sun
- QingHai Salt Lake Industry Co., Ltd., No. 28, Huanghe Road, Golmud 816000, Qinghai, P. R. China
| | - Chenglan Zhang
- QingHai Salt Lake Industry Co., Ltd., No. 28, Huanghe Road, Golmud 816000, Qinghai, P. R. China
| | - Juan Li
- QingHai Salt Lake Industry Co., Ltd., No. 28, Huanghe Road, Golmud 816000, Qinghai, P. R. China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huanan Duan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Huang W, Chen Z, Cheng P, Shi W. Strong size sieving effect in a rigid oxalate-based metal-organic framework for selective lithium extraction. Chem Commun (Camb) 2024; 60:11972-11975. [PMID: 39344498 DOI: 10.1039/d4cc04101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An oxalate-based metal-organic framework Eu-C2O4 was synthesized at gram-scale and studied as a selective adsorbent for Li+ ions, and it exhibited high Li+/Na+ selectivity in aqueous solution. A detailed mechanism study revealed that the key was the well-matched chelating sites of the framework for Li+ ion extraction.
Collapse
Affiliation(s)
- Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Wang C, Li S, Sun P, Yu Z, Yang X. Vortex-assisted hydrophobic natural deep eutectic solvent liquid-liquid microextraction for the removal of silver ions from environmental water. Anal Bioanal Chem 2024; 416:873-882. [PMID: 38062196 DOI: 10.1007/s00216-023-05073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
This study presents a novel approach for the quantification of silver ions in environmental water through the utilization of liquid-liquid microextraction, employing natural deep eutectic solvents in conjunction with inductively coupled plasma emission spectroscopy. The extracted solvent was characterized by Fourier transform infrared spectroscopy (FT-IR). The impact of various extractant types, extractant molar ratio, extractant volume, extraction time, and salt concentration on the efficacy of silver ion extraction was investigated. The findings indicate that the optimal extraction efficiency was attained by utilizing a 5-mL aqueous solution volume, containing 1000 μL thymol/lactic acid NADES 1:3, a salt concentration of 1 mg mL-1, a pH value of 4, and a vortex time of 4 min. Upon implementing the optimized experimental conditions, the recovery of target metal ions was from 96.9 to 101.0%. The relative standard deviations were observed to be within the range of 1.5 to 2.7%. The present study demonstrates the reproducibility, accuracy, and reliability of the method for detecting silver ions in environmental water, with linear range of 5~1000 ng mL-1 and limits of detection (LOD) and limits of quantification (LOQ) of 1.52 ng mL-1 and 5.02 ng mL-1, respectively.
Collapse
Affiliation(s)
- Chao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
| | - Shuo Li
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Peng Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
| | - Zhao Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
| | - Xue Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| |
Collapse
|
4
|
Ma H, Xia Y, Wang Z, Xu T, Simon GP, Wang H. Dual-Channel-Ion Conductor Membrane for Low-Energy Lithium Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17246-17255. [PMID: 37918342 DOI: 10.1021/acs.est.3c05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The development of energy-efficient and environmentally friendly lithium extraction techniques is essential to meet the growing global demand for lithium-ion batteries. In this work, a dual-channel ion conductor membrane was designed for a concentration-driven lithium-selective ion diffusion process. The membrane was based on a porous lithium-ion conductor, and its pores were modified with an anion-exchange polymer. Thus, the sintered lithium-ion conductors provided highly selective cation transport channels, and the functionalized nanopores with positive charges enabled the complementary permeation of anions to balance the transmembrane charges. As a result, the dual-channel membrane realized an ultrahigh Li+/Na+ selectivity of ∼1389 with a competitive Li+ flux of 21.6 mmol·m-2·h-1 in a diffusion process of the LiCl/NaCl binary solution, which was capable of further maintaining the high selectivity over 7 days of testing. Therefore, this work demonstrates the great potential of the dual-channel membrane design for high-performing lithium extraction from aqueous resources with low energy consumption and minimal environmental impact.
Collapse
Affiliation(s)
- Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yun Xia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tongwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Yang L, Tu Y, Li H, Zhan W, Hu H, Wei Y, Chen C, Liu K, Shao P, Li M, Yang G, Luo X. Fluorine-Rich Supramolecular Nano-Container Crosslinked Hydrogel for Lithium Extraction with Super-High Capacity and Extreme Selectivity. Angew Chem Int Ed Engl 2023; 62:e202308702. [PMID: 37471502 DOI: 10.1002/anie.202308702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Extraction and recovery of lithium from reserves play a critical role in the sustainable development of energy due to the explosive growth of the lithium-battery market. However, the low efficiency of extraction and recovery seriously threatens the sustainability of lithium supply. In this contribution, we fabricate a novel mechanically robust fluorine-rich hydrogel, showing highly efficient Li+ extraction from Li-containing solutions. The hydrogel was facilely fabricated by simple one-pot polymerization of supramolecular nanosheets of fluorinated monomers, acrylic acid and a small amount of chemical crosslinkers. The hydrogel exhibits a remarkable lithium adsorption capacity (Qm Li+ =122.3 mg g-1 ) and can be reused. Moreover, it can exclusively extract lithium ions from multiple co-existing metal ions. Notably, the separation of Li+ /Na+ in actual wastewater is achieved with a surprising separation factor of 153.72. The detailed characterizations as well as calculation showed that the specific coordination of Li-F plays a central role for both of the striking recovery capability and selectivity for Li+ . Furthermore, an artificial device was constructed, displaying high efficiency of extracting lithium in various complex actual lithium-containing wastewater. This work provides a new and promising avenue for the efficient extraction and recovery of lithium resource from complex lithium-containing solutions.
Collapse
Affiliation(s)
- Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yunyun Tu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Wanli Zhan
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Huiqin Hu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yun Wei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Changli Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ketao Liu
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Min Li
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| |
Collapse
|
6
|
Li1.5Al0.5Ge1.5(PO4)3 membrane electrodialysis for lithium enrichment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Xie N, Li D, Li Y, Gong J, Hu X. Solar-assisted lithium metal recovery from spent lithium iron phosphate batteries. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Zhang F, Yang S, Du Y, Li C, Bao J, He P, Zhou H. A low-cost anodic catalyst of transition metal oxides for lithium extraction from seawater. Chem Commun (Camb) 2020; 56:6396-6399. [PMID: 32390024 DOI: 10.1039/d0cc01883j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium reserves in seawater are tens of thousands of times higher than on land, making it a promising candidate for lithium resources. A lithium extraction method based on a solar-powered electrolysis technique with a solid-state electrolyte, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), as the selective membrane has been reported to obtain metallic lithium from seawater. Herein, the electrolytic cell is optimised by replacing the anode catalyst materials. The NiO@SP anode shows excellent electrochemical performance, relatively high energy utilization efficiency and low cost among the anode materials investigated. An electrolytic cell adopting NiO@SP achieves a lithium production efficiency of 57.2 mg W h-1 with a potential of 4.5 V at a current density of 333 μA cm-2. Based on the investigation by in situ mass spectroscopy the oxygen evolution reaction (OER) and chlorine evolution reaction (CER) occur together on the anode with the production of oxygen and hypochlorite.
Collapse
Affiliation(s)
- Fan Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Sixie Yang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Yuemin Du
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Chao Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Jiejun Bao
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China. and National Institute of Advanced Industrial Science and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|