1
|
Yamamoto T, Asakura M, Yamanomoto K, Shibata T, Endo K. Creation of a Chiral All-Carbon Quaternary Center Induced by CF 3 and CH 3 Substituents via Cu-Catalyzed Asymmetric Conjugate Addition. Org Lett 2024; 26:5312-5317. [PMID: 38869935 PMCID: PMC11217942 DOI: 10.1021/acs.orglett.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Cu-catalyzed asymmetric construction of a chiral quaternary center bearing CH3 and CF3 groups was achieved with high to excellent enantioselectivity using our originally developed ligands. The asymmetric conjugate addition of Me3Al to β-CF3-substituted enones and unsaturated ketoesters proceeded efficiently. The use of unsaturated ketoesters gives optically active furanones in high yields with high enantioselectivities. The perfluoroalkyl-substituted enone does not seem to be favorable in the present reaction.
Collapse
Affiliation(s)
- Taiyo Yamamoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Masayuki Asakura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ken Yamanomoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Takanori Shibata
- Department
of Chemistry and Biochemistry, Graduate School of Science and Technology, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Endo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Ma M, Feng J, Cai W, Huang Y. Phosphine-Catalyzed Domino Annulation of γ-Vinyl Allenoates: Synthesis of Tetrahydrofuro[3,2- c]quinoline Derivatives. Org Lett 2024; 26:4037-4042. [PMID: 38717087 DOI: 10.1021/acs.orglett.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A novel phosphine-catalyzed domino annulation reaction of γ-vinyl allenoates and o-aminotrifluoacetophenones for the construction of terahydrofuro[3,2-c]quinoline derivatives has been developed. In this domino reaction, two kinds of terahydrofuro[3,2-c]quinoline compounds containing CF3 groups were obtained with good yields under mild conditions, three new C-N, C-C, and C-O bonds can be built in one step, and the reaction selectivity is achieved by adjusting the reaction conditions. Furthermore, preliminary studies on an asymmetric variant of this reaction proceeded with moderate enantioselectivity.
Collapse
Affiliation(s)
- Mengmeng Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiaxu Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
3
|
Lavrencic L, Dhawa U, Blumenstein A, Hu X. Copper-Catalyzed Benzylic Functionalization of Lignin-Derived Monomers. CHEMSUSCHEM 2023; 16:e202300703. [PMID: 37432646 DOI: 10.1002/cssc.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Within the field of lignin biorefining, significant research effort has been dedicated to the advancement of catalytic methods for lignocellulose depolymerization. However, another key challenge in lignin valorization is the conversion of the obtained monomers into higher value-added products. To address this challenge, new catalytic methods that can fully embrace the inherent complexity of their target substrates are needed. Here, we describe copper-catalyzed reactions for benzylic functionalization of lignin-derived phenolics via intermediate formation of hexafluoroisopropoxy-masked para-quinone methides (p-QMs). By controlling the rates of copper catalyst turnover and p-QM release, we have developed copper-catalyzed allylation and alkynylation reactions of lignin-derived monomers to install various unsaturated fragments amenable to further synthetic applications.
Collapse
Affiliation(s)
- Lara Lavrencic
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Uttam Dhawa
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Arthur Blumenstein
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Charpe VP, Ragupathi A, Sagadevan A, Ho YS, Cheng MJ, Hwang KC. Copper (I) Chloride-Catalyzed Photoredox Synthesis of Multifunctionalized Compounds at Room Temperature and Their Antifungal Activities. Chemistry 2023; 29:e202300110. [PMID: 36892141 DOI: 10.1002/chem.202300110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/10/2023]
Abstract
A simple visible-light-induced CuCl-catalyzed synthesis was developed for highly functionalized carbon-centered compounds (α-alk/aryloxy-α-diaryl/alkylaryl-acetaldehydes/ketones) at room temperature using benzoquinone, alkyl/aryl alcohol, and alkyl/aryl terminal/internal alkynes. Late-stage functionalized compounds show good antifungal activities, especially against Candida krusei fungal strain, in in vitro experiments (the Broth microdilution method). Moreover, toxicity tests (zebrafish egg model experiments) indicated that these compounds had negligible cytotoxicity. The green chemistry metrics (E-factor value is 7.3) and eco-scale (eco-scale value is 58.8) evaluations show that the method is simple, mild, highly efficient, eco-friendly, and environmentally feasible.
Collapse
Affiliation(s)
| | - Ayyakkannu Ragupathi
- Department of Chemistry, National Tsing Hua University, Hsinchu, R. O. C., Taiwan
| | | | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan, R.O.C., Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, R.O.C., Taiwan
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, R. O. C., Taiwan
| |
Collapse
|
5
|
Vayer M, Mayer RJ, Moran J, Lebœuf D. Leveraging the Hydroarylation of α-(Trifluoromethyl)styrenes to Access Trifluoromethylated All-Carbon Quaternary Centers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marie Vayer
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| | - Robert J. Mayer
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Université de Strasbourg, CNRS, ISIS UMR
7006, 67000 Strasbourg, France
| |
Collapse
|
6
|
Terashima K, Kawasaki-Takasuka T, Minami I, Yamazaki T. Synthesis and synthetic applications of (4-hydroxyphenyl)perfluoroalkylmethanols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yamazaki T, Taketsugi M, Kawasaki-Takasuka T, Agou T, Kubota T. Construction of CF 3-Containing Quaternary Chiral Centers via Michael Addition Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Masahito Taketsugi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Tomohiro Agou
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Toshio Kubota
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
8
|
Sharma A, Dixit V, Kumar S, Jain N. Visible Light-Mediated In Situ Generation of δ,δ-Disubstituted p-Quinone Methides: Construction of a Sterically Congested Quaternary Stereocenter. Org Lett 2021; 23:3409-3414. [PMID: 33844558 DOI: 10.1021/acs.orglett.1c00862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An unprecedented visible light-assisted and zinc triflate-catalyzed construction of a diaryl-substituted quaternary stereocenter is reported. 2-(4-Hydroxyphenyl)-substituted aldehydes and ketones have been prepared in moderate to high yields via multicomponent reaction of acetylene, benzoquinone (BQ), and indole/aniline/thiol. The reaction is believed to proceed via in situ generation of p-quinone methide through a [2+2] cycloaddition-retroelectrocyclization of BQ and acetylene in blue light followed by a zinc triflate-catalyzed vinylogous Michael addition reaction with nucleophiles.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Vikas Dixit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Sharvan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
9
|
Yamamoto Y, Takase T, Kuroyanagi E, Yasui T. Synthesis of difluoromethylated diarylmethanes via Fe(OTf) 3-catalyzed Friedel-Crafts reaction of 2,2-difluoro-1-arylethyl phosphates. Chem Commun (Camb) 2021; 57:3877-3880. [PMID: 33871534 DOI: 10.1039/d1cc00765c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(OTf)3-catalyzed Friedel-Crafts reaction of 2,2-difluoro-1-arylethyl phosphates with electron-rich (hetero)arenes afforded difluoromethylated diarylmethanes. Control experiments showed that Fe(OTf)3 behaves as the Lewis acid, and that the phosphate leaving group and o- or p-alkoxy substituents on the substrates are necessary for the Fe(OTf)3-catalyzed reaction to proceed under mild conditions.
Collapse
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Tomoya Takase
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Eisuke Kuroyanagi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
10
|
Terashima K, Kawasaki-Takasuka T, Yamazaki T. Construction of fully substituted carbon centers containing a heteroatom and a CF 3 group via in situ generated p-quinone methides. Org Biomol Chem 2021; 19:1305-1314. [PMID: 33503080 DOI: 10.1039/d0ob02469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,6-Conjugate additions of in situ generated δ-CF3-δ-substituted p-quinone methides have been achieved with a variety of heteronucleophiles under mild conditions, which led to facile and practical construction of fully substituted carbon centers including a heteroatom and a CF3 group. In particular, it was revealed that some amines themselves worked for efficient cleavage of the TBS protective group, and addition of a catalytic amount of an appropriate Brønsted acid was found to sometimes improve the progress of the desired process.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| |
Collapse
|
11
|
Pan X, Cao M, Li S, Wang H, Liu X, Liu L. Synthesis of Diarylmethanes Bearing CF
3
‐ and CN‐Substituted All‐carbon Quaternary Centers and Diarylmalononitriles through Cyanation of δ‐Disubstituted
Para
‐Quinone Methides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoguang Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Min Cao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Song Li
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| | - Xigong Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| |
Collapse
|
12
|
Li H, Pang J, Liu H, Zhao C, Li S, Wang H, Liu X. Sc(OTf) 3-Catalyzed 1,6-Conjugate Addition of Thiols to δ-CF 3- δ-aryl-disubstituted para-Quinone Methides: Efficient Construction of Diarylmethane Thioethers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Jha BK, Prudhviraj J, Mainkar PS, Punna N, Chandrasekhar S. Diastereoselective synthesis of CF 3-dihydrobenzofurans by [4+1] annulation of in situ-generated CF 3- o-quinone methides and sulfur ylides. RSC Adv 2020; 10:38588-38591. [PMID: 35517513 PMCID: PMC9057278 DOI: 10.1039/d0ra08289a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
An efficient and highly diastereoselective synthesis of CF3-dihydrobenzofurans by the reaction of in situ-generated CF3-oQMs in the presence of a base with sulphur ylides is put forward. The generality of the present developed method was well studied with diverse substrates to access the corresponding products in excellent yields. The highly reactive CF3-oQM has been utilized first time for the annulation reaction. The first [4 + 1] annulation reaction of in situ-generated highly electrophilic CF3-ortho-quinone methides with sulphur ylides has been put forth under mild reaction conditions to access CF3-dihydrobenzofurans.![]()
Collapse
Affiliation(s)
- Babli K Jha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jaggaraju Prudhviraj
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nagender Punna
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
14
|
Winter M, Schütz R, Eitzinger A, Ofial AR, Waser M. CF 3-Containing para-Quinone Methides for Organic Synthesis. European J Org Chem 2020; 2020:3812-3817. [PMID: 32624681 PMCID: PMC7335660 DOI: 10.1002/ejoc.202000295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/31/2022]
Abstract
A new family of CF3-containing para-quinone methides (CF3-QMs) was systematically investigated for its suitability in organic synthesis. Addition of different nucleophiles gives access to target molecules with a benzylic CF3-containing stereogenic center straightforwardly. The electrophilicity parameter E of the prototypical CF3-QM 2,6-di-tert-butyl-4-(2,2,2-trifluoroethylidene)cyclohexa-2,5-dien-1-one was determined to be -11.68 according to the Mayr scale, making it one of the most reactive quinone methides known so far.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Roman Schütz
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Armin R. Ofial
- Department ChemieLudwig‐Maximilians‐Universität MünchenButenandtstraße 5‐1381377MünchenGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| |
Collapse
|
15
|
Terashima K, Kawasaki-Takasuka T, Agou T, Kubota T, Yamazaki T. Syntheses of α-CF3-α-quaternary ketones via p-quinone methides and their derivatization to compounds with successively congested stereogenic centers. Org Biomol Chem 2020; 18:4638-4644. [DOI: 10.1039/d0ob00951b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NHC-catalyzed 1,6-conjugate additions of a variety of aldehydes to δ-CF3-δ-substituted p-quinone methides and their highly diastereoselective derivatization to compounds with successively congested stereogenic centers were performed.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| | - Tomohiro Agou
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Toshio Kubota
- Department of Biomolecular Functional Engineering
- Ibaraki University
- Hitachi 316-8511
- Japan
| | - Takashi Yamazaki
- Division of Applied Chemistry
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Koganei 184-8588
- Japan
| |
Collapse
|