1
|
Hu J, Li B, Xiong F, Xu Y, Li Z, Gu L, Ma W, Mei R. Electrochemically Driven Chalcogenative Cyclization of 2-Alkynyl Aryl Oxime: Access to Functionalized Isoquinolines. J Org Chem 2025; 90:2626-2635. [PMID: 39918014 DOI: 10.1021/acs.joc.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A transition-metal-free electrochemical chalcogenative cyclization of 2-alkynyl aryl oxime with dichalcogenides has been established to assemble valuable 4-organochalcogen isoquinolines concisely. This protocol proceeds via constant electrolysis in a user-friendly undivided cell setup. It circumvents the necessity of transition metal catalysts, chemical oxidants, and harsh reaction conditions. The practical utilities of the current protocol were illustrated by excellent functional group tolerance, remarkable regio-selectivity, easy scalability, mild reaction conditions, and transformable 4-organochalcogen isoquinoline products.
Collapse
Affiliation(s)
- Jiajun Hu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Feng Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Yue Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wenbo Ma
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
2
|
Lukasevics L, Oh GN, Wang X, Grigorjeva L, Daugulis O. Mechanistic Investigations of Cobalt-Catalyzed, Aminoquinoline-Directed C(sp 2)-H Bond Functionalization. J Am Chem Soc 2025; 147:2476-2490. [PMID: 39792956 PMCID: PMC11924839 DOI: 10.1021/jacs.4c13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp2)-H bond functionalization. A number of organometallic Co(III) intermediates have been isolated and structurally characterized, including, for the first time in the aminoquinoline system, complexes arising from migratory insertion into cobalt-carbon bonds. The catalytic and stoichiometric reactions of cobalt(III) aryls with alkenes, alkynes, carbon monoxide, cyclic secondary amines, and aminoquinoline benzamides have been explored. The oxidation state of cobalt intermediates in the product-forming step depends on the nature of the coupling component. Specifically, annulation with alkynes and carbonylation with CO likely proceed via a Co(I)/Co(III) catalytic cycle. Carbon-hydrogen bond functionalization with alkenes and amines, as well as benzamide homocoupling, likely proceed via a (formally) Co(IV) species and involve oxidatively induced reductive elimination.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - George N Oh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | | | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
3
|
Chen Z, Qian H. Pd/Brønsted Acid Co-catalyzed Dehydrative Coupling of Propargylic Alcohols with Diarylphosphine Oxides. Org Lett 2025; 27:522-527. [PMID: 39720901 DOI: 10.1021/acs.orglett.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
An efficient dehydrative coupling of propargylic alcohols with diarylphosphine oxides to construct tetrasubstituted allenylphosphoryl compounds in the presence of a Pd/Brønsted acid co-catalyst has been developed. As a benefit from the use of a Brønsted acid, this reaction could perform under mild conditions with excellent yields, accommodating a wide range of functional groups. The potential utility of this method has also been demonstrated.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
Lee KS, Barbieri F, Casali E, Marris ET, Zanoni G, Schomaker JM. Elucidating the Mechanism of Electrooxidative Allene Dioxygenation: Dual Role of Tetramethylpiperidine N-Oxyl (TEMPO). J Am Chem Soc 2025; 147:318-330. [PMID: 39680575 DOI: 10.1021/jacs.4c10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation. The resultant vinyl-TEMPO motif is readily postfunctionalized to install a heteroatom at each allene carbon. Mechanistic investigations, including cyclic voltammetry (CV) studies, computations, and monitoring by operando NMR (ReactNMR) were performed to lay the groundwork for future electrochemical allene functionalizations that deliver unique synthetic building blocks.
Collapse
Affiliation(s)
- Ken S Lee
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Federico Barbieri
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Elijah T Marris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Hashmi SZ, Bareth D, Dwivedi J, Kishore D, Alvi PA. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv 2024; 14:18192-18246. [PMID: 38854834 PMCID: PMC11157331 DOI: 10.1039/d4ra02812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Heterocyclic chemistry is a large field with diverse applications in the areas of biological research and pharmaceutical advancement. Numerous initiatives have been proposed to further enhance the reaction conditions to reach these compounds without using harmful compounds. This paper focuses on the recent advances in the eco-friendly and green synthetic procedures to synthesize N-, S-, and O-heterocycles. This approach demonstrates considerable potential in accessing such compounds while circumventing the need for stoichiometric quantities of oxidizing/reducing agents or catalysts containing precious metals. Merely employing catalytic quantities of these substances proves sufficient, thereby offering an optimal means of contributing to resource efficiency. Renewable electricity plays a crucial role in generating environmentally friendly electrons (oxidant/reductant) that serve as catalysts for a series of reactions. These reactions involve the production of reactive intermediates, which in turn allow the synthesis of new chemical bonds, enabling beneficial transformations to occur. Furthermore, the utilization of metals as active catalysts in electrochemical activation has been recognized as an effective approach for achieving selective functionalization. The aim of this review was to summarize the electrochemical synthetic procedures so that the undesirable side reactions can be considerably reduced and the practical potential range of the chemical reactions can be expanded significantly.
Collapse
Affiliation(s)
- Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - P A Alvi
- Department of Physical Sciences, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| |
Collapse
|
6
|
Li B, Zhou Y, Xu Y, Li X, Li Z, Gu L, Ma W, Mei R. Transition-Metal-Free Electrochemical Selenylative Cyclization of Alkynyl Phosphonates. J Org Chem 2023; 88:15414-15427. [PMID: 37871259 DOI: 10.1021/acs.joc.3c01946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Unprecedented regioselective electrochemical tandem selenation/cyclization of alkynyl phosphonates with diselenide is described here. These obtained selenoether products can be chemo-selectively converted into halogen-functionalized cyclic enol phosphonates under our electrochemical conditions. These protocols provide straightforward access to valuable cyclic enol phosphonate or phosphaisocoumarins under the electrochemical and transition-metal-free conditions. The robustness of these transformations was illustrated by their compatibility with various complex natural products and bioactive molecules. The selenoether and halogen functional groups allow the further diversification of the phosphorus heterocycles thus obtained.
Collapse
Affiliation(s)
- Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yue Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
7
|
Ding R, Wang Y, Wang YM. Synthesis of 1,1-Disubstituted Allenylic Silyl Ethers Through Iron-Catalyzed Regioselective C(sp 2)─H Functionalization of Allenes. SYNTHESIS-STUTTGART 2023; 55:733-743. [PMID: 37274078 PMCID: PMC10237284 DOI: 10.1055/a-2004-0951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a synthesis of allenylic silyl ethers through iron-catalyzed functionalization of the C(sp2)─H bonds of monosubstituted alkylallenes. In the presence of a cyclopentadienyliron dicarbonyl based catalyst and triisopropylsilyl triflate as a silylation agent, a variety of aryl aldehydes were suitable coupling partners in this transformation, furnishing a collection of 1,1-disubstituted allenylic triisopropylsilyl ethers as products in moderate to excellent yields as a single regioisomer. Lithium bistriflimide was identified as a critical additive in this transformation. The optimized protocol was scalable, and the products were amenable to further transformation to give a number of unsaturated, polyfunctional derivatives.
Collapse
Affiliation(s)
- Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Aslam S, Sbei N, Rani S, Saad M, Fatima A, Ahmed N. Heterocyclic Electrochemistry: Renewable Electricity in the Construction of Heterocycles. ACS OMEGA 2023; 8:6175-6217. [PMID: 36844606 PMCID: PMC9948259 DOI: 10.1021/acsomega.2c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications in the realm of biological exploration and drug synthesis can be found in heterocyclic chemistry, which is a vast subject. Many efforts have been developed to further improve the reaction conditions to access this interesting family to prevent employing hazardous ingredients. In this instance, it has been stated that green and environmentally friendly manufacturing methodologies have been introduced to create N-, S-, and O-heterocycles. It appears to be one of the most promising methods to access these types of compounds avoiding use of stoichiometric amounts of oxidizing/reducing species or precious metal catalysts, in which only catalytic amounts are sufficient, and it represent an ideal way of contributing toward the resource economy. Thus, renewable electricity provides clean electrons (oxidant/reductant) that initiate a reaction cascade via producing reactive intermediates that facilitate in building new bonds for valuable chemical transformations. Moreover, electrochemical activation using metals as catalytic mediators has been identified as a more efficient strategy toward selective functionalization. Thus, indirect electrolysis makes the potential range more practical, and less side reactions can occur. The latest developments in using an electrolytic strategy to create N-, S-, and O-heterocycles are the main topic of this mini review, which was documented over the last five years.
Collapse
Affiliation(s)
- Samina Aslam
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
- The Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Najoua Sbei
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, EggensteinLeopoldshafen, 76344KarlsruheGermany
| | - Sadia Rani
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Manal Saad
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Aroog Fatima
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Nisar Ahmed
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
9
|
Fang T, Zhang S, Ye Q, Kong S, Yang T, Tang K, He X, Shang Y. Rh-Catalyzed Cascade C-H Activation/Annulation of N-Hydroxybenzamides and Propargylic Acetates for Modular Access to Isoquinolones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238553. [PMID: 36500644 PMCID: PMC9740102 DOI: 10.3390/molecules27238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Collapse
Affiliation(s)
- Taibei Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Kaijie Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| |
Collapse
|
10
|
Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Electrochemical selenium-π-acid promoted hydration of alkynyl phosphonates. Chem Commun (Camb) 2022; 58:7566-7569. [PMID: 35708585 DOI: 10.1039/d2cc01901a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented electrochemical selenium-π-acid promoted hydration of internal alkynes bearing a phosphonate auxiliary was described. Thus, valuable (hetero)aryl and alkyl ketones could be accessed under mild, metal- and external oxidant-free conditions. This protocol features high atom-economy, good chemo- and regio-selectivity, excellent functional group tolerance and easily transformable products. Control experiments demonstrate that phosphonate assistance is essential for this transformation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
11
|
He MX, Yao Y, Ai CZ, Mo ZY, Wu YZ, Zhou Q, Pan YM, Tang HT. Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d1qo01458g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We reported an electrocatalytic C–H activation method to construct novel highly functionalized tetrasubstituted furan derivatives, which uses allenes and 1,3-dicarbonyl compounds as substrates.
Collapse
Affiliation(s)
- Mu-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zu-Yu Mo
- Pharmacy School, Guilin Medical University, Guilin 541004, China
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qi Zhou
- Adesis Inc. A Universal Display company, New Castle, Delaware 19720, USA
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hao-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
12
|
Xie W, Chen X, Li Y, Lin J, Chen W, Shi J. Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
Xu X, Zheng X, Xu X. Synthesis of Tetrahydroquinolines by Scandium-Catalyzed [3 + 3] Annulation of Anilines with Allenes and Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xizhou Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
15
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
16
|
Wang Y, Scrivener SG, Zuo XD, Wang R, Palermo PN, Murphy E, Durham AC, Wang YM. Iron-Catalyzed Contrasteric Functionalization of Allenic C(sp 2)-H Bonds: Synthesis of α-Aminoalkyl 1,1-Disubstituted Allenes. J Am Chem Soc 2021; 143:14998-15004. [PMID: 34491051 DOI: 10.1021/jacs.1c07512] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iron-catalyzed C-H functionalization of simple monosubstituted allenes is reported. An efficient protocol for this process was made possible by the use of a newly developed electron-rich and sterically hindered cationic cyclopentadienyliron dicarbonyl complex as the catalyst and N-sulfonyl hemiaminal ether reagents as precursors to iminium ion electrophiles. Under optimized conditions, the use of a mild, functional-group-tolerant base enabled the conversion of a range of monoalkyl allenes to their allenylic sulfonamido 1,1-disubstituted derivatives, a previously unreported and contrasteric regiochemical outcome for the C-H functionalization of electronically unbiased and directing-group-free allenes.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah G Scrivener
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Philip N Palermo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ethan Murphy
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Chen F, Tang J, Wei Y, Tian J, Gao H, Yi W, Zhou Z. Rh(III)-Catalyzed and synergistic dual directing group-enabled redox-neutral [3+3] annulation of N-phenoxyacetamides with α-allenols. Chem Commun (Camb) 2021; 57:9284-9287. [PMID: 34519313 DOI: 10.1039/d1cc03206b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By virtue of α-allenols as innovative three-carbon annulation components, the Rh(III)-catalyzed redox-neutral C-H coupling of N-phenoxyacetamides with α-allenols has been realized for the assembly of 4-alkylidene chroman-2-ol frameworks via an unusual [3+3] annulation. This transformation features good functional group tolerance, specific regio-/chemoselectivity and potential synthetic utility. Mechanistic studies reveal that synergistic coordination modes between the dual directing groups (-ONHAc and -OH) and the rhodium metal center account for the observed exclusive selectivity.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Jingyuan Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
18
|
Xiong F, Li B, Yang C, Zou L, Ma W, Gu L, Mei R, Ackermann L. Copper-mediated oxidative C-H/N-H activations with alkynes by removable hydrazides. Beilstein J Org Chem 2021; 17:1591-1599. [PMID: 34290838 PMCID: PMC8275871 DOI: 10.3762/bjoc.17.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
The efficient copper-mediated oxidative C-H alkynylation of benzhydrazides was accomplished with terminal alkynes. Thus, a heteroaromatic removable N-2-pyridylhydrazide allowed for domino C-H/N-H functionalization. The approach featured remarkable functional group compatibility and ample substrate scope. Thereby, highly functionalized aromatic and heteroaromatic isoindolin-1-ones were accessed with high efficacy with rate-limiting C-H cleavage.
Collapse
Affiliation(s)
- Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany and 4Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Samanta RC, Ackermann L. Evolution of Earth-Abundant 3 d-Metallaelectro-Catalyzed C-H Activation: From Chelation-Assistance to C-H Functionalization without Directing Groups. CHEM REC 2021; 21:2430-2441. [PMID: 34028175 DOI: 10.1002/tcr.202100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
20
|
Zhong R, Xu Y, Sun M, Wang Y. Palladium-Catalyzed Regioselective C-H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. J Org Chem 2021; 86:5255-5264. [PMID: 33750119 DOI: 10.1021/acs.joc.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A regioselective C-H functionalization/annulation reaction of N-sulfonyl amides and allylbenzenes through a palladium-catalyzed C(sp2)-H allylation/aminopalladation/β-H elimination/isomerization sequence has been reported. Various aryl and alkenyl carboxamides are found to be efficient substrates to construct isoquinolinones and pyridinones in up to 96% yield. Using ambient air as the terminal oxidant is another advantage regarding environmental friendliness and operational simplicity.
Collapse
Affiliation(s)
- Rong Zhong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yong Xu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yurong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
21
|
Volla CMR, Shukla RK, Nair AM. Allenes: Versatile Building Blocks in Cobalt-Catalyzed C–H Activation. Synlett 2021. [DOI: 10.1055/a-1471-7307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe unique reactivity of allenes has led to their emergence as valuable coupling partners in transition-metal-mediated C–H activation reactions. On the other hand, due to its high abundance and high Lewis acidity, cobalt is garnering widespread interest as a useful catalyst for C–H activation. Here, we summarize cobalt-catalyzed C–H activations involving allenes as coupling partners and then describe our studies on Co(III)-catalyzed C-8 dienylation of quinoline N-oxides with allenes bearing a leaving group at the α-position for realizing a dienylation protocol.
Collapse
|
22
|
Zhong J, Yu Y, Zhang D, Ye K. Merging cobalt catalysis and electrochemistry in organic synthesis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Mei R, Yang C, Xiong F, Mao M, Li H, Sun J, Zou L, Ma W, Ackermann L. Access to 10‐Phenanthrenols
via
Electrochemical C−H/C−H Arylation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Meihua Mao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Hongmei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Junmei Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 People's Republic of China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
24
|
Xu H, Han T, Luo X, Deng W. Construction of
3‐Azabicyclo
[3.1.0]hexane Backbone by the Reaction of Allenes with Allylamines
via
Tandem Michael Addition and
Copper‐Mediated
Oxidative Carbanion Cyclization. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Xu
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Teng Han
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiaoyan Luo
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
25
|
Li T, Li J, Zhu Z, Chen Y, Li X, Yang Q, Xia J, Zhang W, Zhang C, Pan W, Wu S. Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Org Chem Front 2021. [DOI: 10.1039/d0qo01127d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed an efficient annulation of benzamides with allenes using cobalt and photoredox dual catalysis under an oxygen atmosphere. The transformation features an alternative strategy for the regeneration of a cobalt catalyst with the aid of Eosin Y.
Collapse
|
26
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. Angew Chem Int Ed Engl 2020; 59:17042-17048. [PMID: 32558084 DOI: 10.1002/anie.202003216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Indexed: 12/19/2022]
Abstract
An efficient Cp*CoIII -catalyzed C8-dienylation of quinoline-N-oxides was achieved by employing allenes bearing leaving groups at the α-position as the dienylating agents. The reaction proceeds by CoIII -catalyzed C-H activation of quinoline-N-oxides and regioselective migratory insertion of the allene followed by a β-oxy elimination, leading to overall dienylation. Site-selective C-H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional-group tolerance. C8-alkenylation of quinoline-N-oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram-scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Salman Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
28
|
Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. Chemistry 2020; 26:10936-10947. [PMID: 32329534 PMCID: PMC7497266 DOI: 10.1002/chem.202001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
29
|
Samanta RC, Meyer TH, Siewert I, Ackermann L. Renewable resources for sustainable metallaelectro-catalysed C-H activation. Chem Sci 2020; 11:8657-8670. [PMID: 34123124 PMCID: PMC8163351 DOI: 10.1039/d0sc03578e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The necessity for more sustainable industrial chemical processes has internationally been agreed upon. During the last decade, the scientific community has responded to this urgent need by developing novel sustainable methodologies targeted at molecular transformations that not only produce reduced amounts of byproducts, but also by the use of cleaner and renewable energy sources. A prime example is the electrochemical functionalization of organic molecules, by which toxic and costly chemicals can be replaced by renewable electricity. Unrivalled levels of resource economy can thereby be achieved via the merger of metal-catalyzed C-H activation with electrosynthesis. This perspective aims at highlighting the most relevant advances in metallaelectro-catalysed C-H activations, with a particular focus on the use of green solvents and sustainable wind power and solar energy until June 2020.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Inke Siewert
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
30
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt‐Catalyzed C8‐Dienylation of Quinoline‐
N
‐Oxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Akshay M. Nair
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Salman Khan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
31
|
Zhao Y, Shi C, Su X, Xia W. Synthesis of isoquinolones by visible-light-induced deaminative [4+2] annulation reactions. Chem Commun (Camb) 2020; 56:5259-5262. [DOI: 10.1039/d0cc01333a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A metal-free approach for the synthesis of isoquinolone derivatives by means of photoinitiated deaminative [4+2] annulation of alkynes and N-amidepyridinium salts is presented.
Collapse
Affiliation(s)
- Yating Zhao
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
- State Key Lab of Urban Water Resource and Environment
| | - Chengcheng Shi
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xing Su
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
32
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|