1
|
Wang K, Xu H, Dang Y. Understanding the mechanism and origins of stereoconvergence in nickel-catalyzed hydroarylation of 1,3-dienes with aryl boronates. Dalton Trans 2023; 52:4849-4855. [PMID: 36939628 DOI: 10.1039/d3dt00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Nickel-catalyzed stereoselective hydroarylation is one of the most efficient methods to access functionalized arenes. Herein, computational studies have been applied to reveal the mechanism and origins of ligand-controlled enantioselectivity of Ni-catalyzed hydroarylation of 1,3-dienes using ethanol as the hydrogen source. DFT calculations show that the hydroarylation of (E)-diene takes place via concerted hydronickelation aided by boronate leading to an alkylnickel(II) intermediate, which further undergoes transmetallation and C-C reductive elimination to deliver the final chiral alkylarene. The hydronickelation is found to be the rate-determining step and is irreversible. The enantioselectivity is dominated by the transmetallation step, in which the ligand-substrate interactions are analyzed to unveil the source of stereocontrol. Besides, mechanistic studies demonstrate that the (Z)-diene initially reacts to offer a (S)-Z-alkyl-Ni(II) species, which preferably undergoes facile isomerization via σ-π-σ-π-σ interconversion to the (R)-E-alkyl-Ni(II) complex rather than the transmetallation step, thus ultimately generating the same (R)-alkylarene product as (E)-diene. Overall, the mechanistic understanding will be useful for the further advancement of asymmetric hydroarylation of dienes.
Collapse
Affiliation(s)
- Keke Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Cheng Q, Liu W, Dang Y. Insights into the mechanism and regioselectivity in Ni-catalysed redox-relay migratory hydroarylation of alkenes with arylborons. Chem Commun (Camb) 2021; 57:13610-13613. [PMID: 34852028 DOI: 10.1039/d1cc05125c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DFT studies reveal that Ni-catalysed redox-relay hydroarylation of alkenes occurs via concerted hydronickelation, iterative β-H elimination/migratory insertion and reductive elimination to yield the α-substituted product. The driving force for the redox-relay migratory hydroarylation arises from the stability of the LArNi(II)CHPhPr intermediate, which only allows its C-C elimination pathway to be opened up.
Collapse
Affiliation(s)
- Qi Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Ren X, Tang L, Shen C, Li H, Wang P, Dong K. Enantioselective Hydroesterificative Cyclization of 1,6-Enynes to Chiral γ-Lactams Bearing a Quaternary Carbon Stereocenter. Org Lett 2021; 23:3561-3566. [PMID: 33908782 DOI: 10.1021/acs.orglett.1c00952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed asymmetric hydroesterification-cyclization of 1,6-enynes with CO and alcohol was developed to efficiently prepare a variety of enantioenriched γ-lactams bearing a chiral quaternary carbon center and a carboxylic ester group. The approach featured good to high chemo-, region-, and enantioselectivities, high atom economy, and mild reaction conditions as well as broad substrate scope. The correlation between the multiple selectivities of such process and the N-substitutes of the amide linker in the 1,6-enyne substrate has been depicted by the crystallographic evidence and control experiments.
Collapse
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lin Tang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Huimin Li
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Peng Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| |
Collapse
|
4
|
Wang C, Xi Y, Huang W, Qu J, Chen Y. Nickel-Catalyzed Regioselective Hydroarylation of Internal Enamides. Org Lett 2020; 22:9319-9324. [DOI: 10.1021/acs.orglett.0c03542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Li Z, Fu Y, Deng R, Tran VT, Gao Y, Liu P, Engle KM. Ligand‐Controlled Regiodivergence in Nickel‐Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zi‐Qi Li
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yue Fu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Ruohan Deng
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Van T. Tran
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yang Gao
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Keary M. Engle
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
6
|
Li Z, Fu Y, Deng R, Tran VT, Gao Y, Liu P, Engle KM. Ligand‐Controlled Regiodivergence in Nickel‐Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angew Chem Int Ed Engl 2020; 59:23306-23312. [DOI: 10.1002/anie.202010840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Zi‐Qi Li
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yue Fu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Ruohan Deng
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Van T. Tran
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yang Gao
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Keary M. Engle
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|