1
|
Orozco JC, Shuaib DT, Swenson L, Chen YP, Chen YS, Khan MI. Encapsulation of the vanadium substituted Keggin polyoxometalates [α-PVW 11O 40] 4- and [α-PV 2W 10O 40] 5- in HKUST-1. Dalton Trans 2024; 53:15913-15919. [PMID: 39258942 DOI: 10.1039/d4dt01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two POM@MOF hybrid materials composed of a copper-based metal-organic framework (MOF) [Cu3(C9H3O6)2(H2O)3]n (HKUST-1) encapsulating vanadium-substituted Keggin polyoxometalates (POM), [α-PVW11O40]4- (PVW11) and [α-PV2W10O40]5- (PV2W10), were prepared and characterized. PVW11@HKUST-1 and PV2W10@HKUST-1 were synthesized hydrothermally by self-assembly of HKUST-1 in the presence of the preformed POMs, [α-PVW11O40]4- and [α-PV2W10O40]5-, respectively. The two POM@MOF composites were characterized by X-ray diffraction, TGA, BET surface area analysis and FT-IR and Raman spectroscopy. The electronic structure of the POM@MOF materials and their respective constituents is surveyed using solid state UV-vis reflectance spectroscopy. The UV-vis spectra order the oxidizing strength of the POM constituents ([α-PV2W10O40]5- > [α-PVW11O40]4-) and reveal the distinct electronic structure of the POM@MOF materials obtained by synthetic encapsulation of mono- and di-vanadium substituted Keggin polyoxotungstates in HKUST-1.
Collapse
Affiliation(s)
- José C Orozco
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Damola T Shuaib
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - LaSalle Swenson
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Ying-Pin Chen
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Lemont, IL 60439, USA
| | - M Ishaque Khan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
2
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Wu N, Guo H, Wang M, Peng L, Chen Y, Liu B, Pan Z, Liu Y, Yang W. A ratiometric sensor for selective detection of Hg 2+ ions by combining second-order scattering and fluorescence signals of MIL-68(In)-NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120858. [PMID: 35016060 DOI: 10.1016/j.saa.2022.120858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Ratio fluorescence has attracted much attention because of its self-calibration properties. However, it is difficult to obtain suitable fluorescent materials with well-resolved signals simultaneously under one excitation. In this work, we report a different strategy, using MIL-68(In)-NH2 as both the fluorescence element and the scattered light unit, and coupling the fluorescence and the scattered light to construct the fluorescence and scattered light ratio system. Based on the optical properties and the second-order scattering (SOS) of the material nanoparticles, the synthesized MIL-68(In)-NH2 can be used to realize the ratio detection of Hg2+. Because the scattering intensity of small particle MIL-68(In)-NH2 is weak, SOS is not obvious. When Hg2+ is introduced the coordination reaction between the amino nitrogen atoms of MIL-68(In)-NH2 and Hg2+ make the particles larger, resulting in the decrease of fluorescence and the enhancement of SOS. As a result, a novel Hg2+ ratiometric detection method is developed by using the dual signal responses of the fluorescence and scattering. Under the optimal conditions (pH = 6, reaction time 5 min, room temperature, and the maximum excitation wavelength 365 nm), the linear range of the method is 0-100 μM, and the detection limit is 5.8 nM (Ksv = 9.89 × 109 M-1). In addition, the probe is successfully used to evaluate Hg2+ in actual water samples. Compared with the traditional method of recording only the fluorescence signal, the proposed fluorescence-scattering method provides a new strategy for the design of ratiometric sensors.
Collapse
Affiliation(s)
- Ning Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Mingyue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Liping Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuan Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Bingqing Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhilan Pan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yinsheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Bai JD, Zhang YH, Shi H, Shi Q, Shi FN. Synthesis, structure and lithium storage performance of a copper–molybdenum complex polymer based on 4,4′-bipyridine. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Yu WD, Zhang Y, Han YY, Li B, Shao S, Zhang LP, Xie HK, Yan J. Microwave-Assisted Synthesis of Tris-Anderson Polyoxometalates for Facile CO 2 Cycloaddition. Inorg Chem 2021; 60:3980-3987. [PMID: 33626279 DOI: 10.1021/acs.inorgchem.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Four new tris-Anderson polyoxometalates (POMs), (NH4)4[ZnMo6O18(C4H8NO3)(OH)3]·4H2O (1), (NH4)4[CuMo6O18(C4H8NO3)(OH)3]·4H2O (2), (TBA)3(NH4)[ZnMo6O17(C5H9O3)2(OH)]·10H2O (3) (TBA = n-C16H36N), and (NH4)4[CuMo6O18(C5H9O3)2]·16H2O (4), were synthesized by a microwave-assisted method. Single-crystal X-ray diffraction revealed that 1 and 2 contained a tris (trihydroxyl organic compounds) ligand grafted on one side, while two tris ligands were grafted on two sides to form χ/δ and δ/δ isomers in 3 and 4, respectively. 1H and 13C NMR spectra of the χ/δ isomer 3 were obtained for the first time, with six methylenes showing six peaks in the 1H NMR spectrum and only four peaks in the 13C NMR spectrum. Mass spectrometry monitoring revealed that during the microwave-assistant process the tris ligand can graft onto POMs to form 1, while tris directly coordinates with metallic heteroatoms to form isopolymolybdates during the conventional reflux synthesis process. In addition, 1-4 can catalyze CO2 with epoxides into cyclic carbonates with high selectivity and yields at an atmospheric pressure of CO2, which is lower than the pressure of CO2 in other catalysis using POMs as catalysts. Furthermore, 1-4 showed good catalytic stability and cycling properties. Mechanism studies substantiated POMs cocatalyzed with Br- to improve the catalytic yields.
Collapse
Affiliation(s)
- Wei-Dong Yu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, P. R. China
| | - Yu-Yang Han
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Sai Shao
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Le-Ping Zhang
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Hong-Ke Xie
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| |
Collapse
|
6
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
7
|
Du ZY, Yu YZ, Hong YL, Li NF, Han YM, Cao JP, Sun Q, Mei H, Xu Y. Polyoxometalate-Based Metal-Organic Frameworks with Unique High-Nuclearity Water Clusters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57174-57181. [PMID: 33300787 DOI: 10.1021/acsami.0c18970] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The maximum exposure of polyoxometalates (POMs) is of great significance to enhance the catalytic performance of HKUST-1 with incorporated Keggin-type POMs. Herein, two phosphovanadomolybdates were encapsulated into the HKUST-1 via a hydrothermal method to obtain two polyoxometalate-based metal-organic frameworks, formulated as [Cu12(BTC)8(H2O)12][H4PMo11VO40]@(H2O)30 (1) and [Cu12(BTC)8(H2O)12][H5PMo10V2O40]@(H2O)49 (2). Single-crystal X-ray diffraction analysis indicates that two compounds contain unique high-nuclearity water clusters without organic counter cations. The octahedral-shaped water cluster (H2O)30 was constructed from square-pyramid-shaped (H2O)5 for compound 1, while the huge cage-shaped water cluster (H2O)49 of compound 2 consisted of crown-like (H2O)8 and one water molecule, which substitute the organic counter cations involved in the structural construction. More importantly, after removing the water clusters via simple heat treatment, the active sites of the two compounds were fully exposed, leading to good catalytic activities for both benzene hydroxylation reaction and oxidative desulfurization. Furthermore, the catalytic test confirmed that compound 2 may be a bifunctional heterogeneous catalyst with great promise for both benzene hydroxylation and oxidative desulfurization.
Collapse
Affiliation(s)
- Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan-Zhao Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ya-Lin Hong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ye-Min Han
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Qi Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Dou MY, Zhong DD, Huang XQ, Yang GY. Imidazole-induced self-assembly of polyoxovanadate cluster organic framework for efficient Knoevenagel condensation under mild conditions. CrystEngComm 2020. [DOI: 10.1039/d0ce00660b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three new polyoxovanadates have been made, one of them displays highly efficient heterogeneous solvent-free catalytic activity and excellent recyclability in the Knoevenagel condensation at room temperature.
Collapse
Affiliation(s)
- Ming-Yu Dou
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Dan-Dan Zhong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
9
|
Xi FG, Sun W, Dong ZY, Yang NN, Gong T, Gao EQ. An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups. Chem Commun (Camb) 2020; 56:13177-13180. [DOI: 10.1039/d0cc05568a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tertiary aliphatic amino modified UiO-67/66(Zr), IRMOF-n(Zn) and MIL-101(Fe) were synthesized by a facile and efficient one-pot strategy under the corresponding metal catalysis.
Collapse
Affiliation(s)
- Fu-Gui Xi
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- P. R. China
| | - Wei Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Zhi-yun Dong
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- P. R. China
| | - Ning-Ning Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|