1
|
Cheng QY, Wang T, Hu J, Chen HY, Xu JJ. In Situ Probing the Short-Lived Intermediates in Visible-Light Heterogeneous Photocatalysis by Mass Spectrometry. Anal Chem 2023; 95:14150-14157. [PMID: 37665645 DOI: 10.1021/acs.analchem.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Visible-light-mediated heterogeneous photocatalysis has recently emerged as an environmentally friendly and energy-sustainable alternative for organic transformations. Despite the advancements in developing wide varieties of photocatalysts during the past decades, the accurate probing and identification of the photogenerated species, especially the short-lived radical intermediates, are still challenging. In this work, we reported a hybrid ion emitter that integrated with a pico-liter heterogeneous photocatalytic reactor, which was fabricated by depositing the photocatalyst (e.g., TiO2) into the front tip of a quartz micropipette. Benefited from the dual-function feature of the hybrid micropipette (i.e., a clog-free tip-confined pico-liter reactor for heterogeneous photocatalysis and an ion emitter for nanoelectrospray ionization), sensitized photoredox reactions at the catalyst-solution interface can be triggered upon visible-light irradiation using a cheap LED laser (453 nm), and the newly produced transient radical intermediates can be rapidly transformed into gaseous ions for mass spectrometric identification. Using this novel low-delay coupling device, photogenerated intermediates, including the cationic radicals produced during the photooxidation of anilines and the anionic radicals produced during the photoreduction of quinones, were successfully captured by mass spectrometry. We believe that our hybrid photochemical microreactor/ion emitter has provided a new and powerful tool for exploring the complicated heterogeneous photochemical processes, especially their ultrafast initial transformations.
Collapse
Affiliation(s)
- Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Hu J, Wang T, Zhang WJ, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia XH, Chen HY, Xu JJ. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021; 60:18494-18498. [PMID: 34129259 DOI: 10.1002/anie.202106945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/06/2022]
Abstract
A novel mass spectrometric method for probing the flash chemistry of electrogenerated reactive intermediates was developed based on rapid collision mixing of electrosprayed microdroplets by using a theta-glass capillary. The two individual microchannels of the theta-glass capillary are asymmetrically or symmetrically fabricated with a carbon bipolar electrode to produce intermediates in situ. Microdroplets containing the newly formed intermediates collide with those of the invoked reactants at sub-10 microsecond level, making it a powerful tool for exploring their ultrafast initial transformations. As a proof-of-concept, we present the identification of the key radical cation intermediate in the oxidative dimerization of 8-methyl-1,2,3,4-tetrahydroquinoline and also the first disclosure of previously hidden nitrenium ion involved reaction pathway in the C-H/N-H cross-coupling between N,N'-dimethylaniline and phenothiazine.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wen-Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Han Hao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Hu J, Wang T, Zhang W, Hao H, Yu Q, Gao H, Zhang N, Chen Y, Xia X, Chen H, Xu J. Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wen‐Jun Zhang
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Han Hao
- Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing 211166 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
4
|
Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chem Sci 2020; 12:969-975. [PMID: 34163863 PMCID: PMC8179209 DOI: 10.1039/d0sc05665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Qile Wang
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Yasmine M Mohamed
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Carlos Pacheco
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| |
Collapse
|