1
|
Chen G, Li R, Huang L. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts. NANOSCALE 2023; 15:13909-13931. [PMID: 37581402 DOI: 10.1039/d3nr02475j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Photochemical deposition has been attracting increasing attention for preparing nano-catalysts due to its mild reaction conditions, simplicity, green and safe characteristics, and potential for various applications in photocatalysis, thermal catalysis, and electrocatalysis. In this review, we provide an overview of recent advances in photochemical deposition methods for fabricating heterogeneous catalysts, and summarize the factors that influence the nucleation and growth of metal nanoparticles during the photochemical process. Specifically, we focus on the various factors including surface defects, crystal facets, surface properties and the surface plasmon effect on the size, morphology and distribution control of metal and metal oxide nanoparticles on semiconductors. The control of the photogenerated charges and the triggered photochemical reactions have been proved to be significant in the photochemical deposition process. Besides, the applications of the obtained catalytic materials in thermal catalysis and electrocatalysis is highlighted, considering that many reviews have covered photocatalysis applications. We first introduce the principle of photodeposition, nucleation and growth theory, and factors affecting photodeposition. Then, we introduce photodeposition methods that can achieve "controlled" photodeposition from a strategic perspective. Finally, we summarize the fruitful results of controlled photodeposition and provide future prospects for the development of controlled photodeposition technologies and methods, as well as the deepening and expansion of applications.
Collapse
Affiliation(s)
- Guoli Chen
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Wang C, Liu Y, Li Y, Sun X, Xu L, Huang W. Facile defect construction of TiO2 nanotube for excellent photocatalytic degradation of tetracycline under visible light. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Zhang X, Tang P, Zhai G, Lin X, Zhang Q, Chen J, Wei X. Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2076-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Wu H, Jiang W, Shi L, Li R, Huang L, Li C. Photo-assisted sequential assembling of uniform metal nanoclusters on semiconductor support. iScience 2022; 25:103572. [PMID: 34984328 PMCID: PMC8692999 DOI: 10.1016/j.isci.2021.103572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Dispersing metal nanoclusters on the oxide supports is attracting close attention in heterogeneous catalysis, but great challenges still lie in controlling the size and dispersion of nanoclusters due to the inevitable agglomeration. Here, we propose a sequential photochemical deposition strategy named “first store, and then release” to uniformly fabricate the size-controlling noble metal nanoclusters on semiconductor oxides. Using the typical semiconductor TiO2, the photoexcited electrons can be first stored as reduced species (e.g. Ti3+) under irradiation and the Ti3+ species can optimize both the nucleation and growth processes in dark reaction, resulting in a uniform dispersing of various noble metals (Au, Pt, Ag etc.) with size diameters of ∼1 nm. The nanoclusters catalysts exhibited superior performance in catalytic oxidation of HCHO compared with that of nanoparticles. This work brings a new and useful strategy to construct size-controlling noble metals on the oxide supports for heterogeneous catalysis and the related fields. Metal nanoclusters were deposited on semiconductors via sequential photodeposition Ti3+ species store the photoelectrons and optimize the nucleation and growth processes The catalysts exhibit superior performance in catalytic oxidation of HCHO
Collapse
Affiliation(s)
- Haocheng Wu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wentao Jiang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Corresponding author
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Corresponding author
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
5
|
Qian K. A New Strategy to Regulate the Selectivity of Photo-Mediated Catalytic Reaction. Front Chem 2021; 9:673857. [PMID: 34434916 PMCID: PMC8380827 DOI: 10.3389/fchem.2021.673857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Here we developed a new method for regulating the selectivity of photo-mediated catalytic reaction by manipulating the surface charge of Au/TiO2 (gold/titanium dioxide) catalysts within chemical reaction timescales. Two kinds of photocatalytic reactions, hydrogenation of acetophenone and benzyl alcohol oxidation, have been applied to investigate the photocatalytic performance over Au/TiO2 catalysts with tunable surface charges. We found that a suitable timescale of switching surface charge on Au would benefit for the enhanced quantum efficiency and play different roles in the selectivity of desired products in hydrogenation and oxidation reactions. Au/TiO2 catalyst under 5 μs flashing light irradiation exhibits much higher selectivity of 1-phenylethanol in the hydrogenation of acetophenone than that under continuous light and 5 s flashing light irradiation; by contrast, Au/TiO2 catalysts under both flashing light and continuous light irradiation exhibit a similar selectivity of benzaldehyde in benzyl alcohol oxidation. Our findings will benefit for a better understanding of electronic structure-mediated reaction mechanism and be helpful for achieving highly efficient photocatalytic systems.
Collapse
Affiliation(s)
- Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Zhao W, Li Y, Shen W. Tuning the shape and crystal phase of TiO 2 nanoparticles for catalysis. Chem Commun (Camb) 2021; 57:6838-6850. [PMID: 34137748 DOI: 10.1039/d1cc01523k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of TiO2 nanoparticles with tunable shape and crystal phase has attracted considerable attention for the design of highly efficient heterogeneous catalysts. Tailoring the shape of TiO2, in the crystal phases of anatase, rutile, brookite and TiO2(B), allows tuning of the atomic configurations on the dominantly exposed facets for maximizing the active sites and regulating the reaction route towards a specific channel for achieving high selectivity. Moreover, the shape and crystal phase of TiO2 nanoparticles alter their interactions with metal species, which are commonly termed as strong metal-support interactions involving interfacial strain and charge transfer. On the other hand, metal particles, clusters and single atoms interact differently with TiO2, because of the variation of the electronic structure, while the surface of TiO2 determines the interfacial bonding via a geometric effect. The dynamic behavior of the metal-titania interfaces, driven by the chemisorption of the reactive molecules at elevated temperatures, also plays a decisive role in elaborating the structure-reactivity relationship.
Collapse
Affiliation(s)
- Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Yan J, Liu J, Ji Y, Batmunkh M, Li D, Liu X, Cao X, Li Y, Liu S, Ma T. Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, 710119, People’s Republic of China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, 710119, People’s Republic of China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Munkhbayar Batmunkh
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Dan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, 710119, People’s Republic of China
| | - Xiaoshuang Liu
- Positron Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xingzhong Cao
- Positron Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, 710119, People’s Republic of China
| | - Tianyi Ma
- Discipline of Chemistry, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|