1
|
Spearman AL, Lin EY, Mobley EB, Chmyrov A, Arús BA, Turner DW, Garcia CA, Bui K, Rowlands C, Bruns OT, Sletten EM. High-Resolution Multicolor Shortwave Infrared Dynamic In Vivo Imaging with Chromenylium Nonamethine Dyes. J Am Chem Soc 2025; 147:17384-17393. [PMID: 40343727 PMCID: PMC12100650 DOI: 10.1021/jacs.5c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Imaging in the shortwave infrared (SWIR) region offers fast, high-resolution visualization of in vivo targets in a multiplexed manner. These methods require bright, bathochromically shifted fluorescent dyes with sufficient emission at SWIR wavelengths-ideally above 1500 nm for high-resolution deep tissue imaging. Polymethine dyes are a privileged class of contrast agents due to their excellent absorption and high degree of modularity. In this work, we push flavylium and chromenylium dyes further into the SWIR region through polymethine chain extension. This panel of nonamethine dyes boasts absorbances as red as 1149 nm and tail emission beyond 1500 nm. These dyes are the brightest organic fluorophores at their respective bandgaps to date, with εmax ∼ 105 M-1 cm-1 and ΦF up to 0.5%. Using two nonamethine dyes, Chrom9 and JuloFlav9, we performed two-color all-SWIR multiplexed imaging (Excitation at 1060 and 1150 nm; Emission collection at >1500 nm), enhancing the depths and resolutions able to be obtained in multicolor SWIR imaging with small molecule contrast agents. Finally, we combine the nonamenthine dyes with other SWIR-emissive fluorophores and demonstrate five-color awake imaging in an unrestrained mouse, simultaneously pushing the multiplexing, resolution, and speed limits of in vivo optical imaging.
Collapse
Affiliation(s)
- Anthony L. Spearman
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Eric Y. Lin
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Emily B. Mobley
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Andriy Chmyrov
- Department
of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden01307, Germany
- German
Cancer Research Center (DKFZ), Heidelberg69120, Germany
- Medical
Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden01062, Germany
- Helmholtz
Zentrum Dresden-Rossendorf (HZDR), Dresden01328, Germany
- Helmholtz
Pioneer Campus, Helmholtz Munich, Neuherberg85764, Germany
| | - Bernardo A. Arús
- Department
of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden01307, Germany
- German
Cancer Research Center (DKFZ), Heidelberg69120, Germany
- Medical
Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden01062, Germany
- Helmholtz
Zentrum Dresden-Rossendorf (HZDR), Dresden01328, Germany
- Helmholtz
Pioneer Campus, Helmholtz Munich, Neuherberg85764, Germany
| | - Daniel W. Turner
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Cesar A. Garcia
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Kyle Bui
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
| | - Christopher Rowlands
- Department
of Bioengineering, Royal School of Mines, Imperial College London, LondonSW7 2AZ, United
Kingdom
| | - Oliver T. Bruns
- Department
of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden01307, Germany
- German
Cancer Research Center (DKFZ), Heidelberg69120, Germany
- Medical
Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden01062, Germany
- Helmholtz
Zentrum Dresden-Rossendorf (HZDR), Dresden01328, Germany
- Helmholtz
Pioneer Campus, Helmholtz Munich, Neuherberg85764, Germany
| | - Ellen M. Sletten
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California90095, United States
| |
Collapse
|
2
|
Shabelko AR, Derevyanko NA, Ishchenko AA, Yu Tananaiko O. Indopolycarbocyanine dyes as perspective analytical reagents for spectrophotometric determination of nitrite by radical nitration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124728. [PMID: 38955070 DOI: 10.1016/j.saa.2024.124728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
A spectrophotometric method for the quantitative determination of nitrite was developed, based on the radical nitration of indopolycarbocyanine dyes in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The rate of the reaction of the studied dyes with nitrite increases with the lengthening of the polymethine chain and the presence of hydrophilic sulfo groups in the side chain of the dye. TEMPO acts as a co-reagent, significantly accelerating the reaction rate and increasing the sensitivity of nitrite determination. The proposed reaction mechanism is supported by spectrophotometric and HPLC/MS studies. For Ind2 (tetramethine indocarbocyanine cationic dye), the limit of detection for nitrite is 0.50 µM within a linearity range of 1-13 µM. The developed method is sensitive, with a LOD 130 times lower than the maximum contaminant level (MCL) of nitrite in drinking water (65 μM), as specified by the WHO. The method is of low-toxicity and good selectivity, as the determination of nitrite is not significantly affected by the main components of water. The method was successfully applied for the analysis of nitrite in natural and bottled water.
Collapse
Affiliation(s)
- Andrii R Shabelko
- Taras Shevchenko National University of Kyiv 01601, Kyiv, Str. Volodymyrska, 64/13, Ukraine
| | - Nadiya A Derevyanko
- Institute of Organic Chemistry of the NAS of Ukraine, 02660 Kyiv, Str. Akademika Kuharya,5, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry of the NAS of Ukraine, 02660 Kyiv, Str. Akademika Kuharya,5, Ukraine
| | - Oksana Yu Tananaiko
- Taras Shevchenko National University of Kyiv 01601, Kyiv, Str. Volodymyrska, 64/13, Ukraine.
| |
Collapse
|
3
|
Song R, Dong Y, Zhong Z, Zhao Q, Hu Y, Lei M, Lei P, Jiang Z, Qian K, Shi C, He Z, Qin Y, Wang J, Chen H. Systematic Structural Modification of Squaraine Dye for Near-Infrared Window One and Two Multiplexed In Vivo Imaging and Photothermal Therapy. J Med Chem 2024; 67:10275-10292. [PMID: 38842846 DOI: 10.1021/acs.jmedchem.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Due to the wide application of reporter gene-related visible/NIR-I bioluminescent imaging, multiplexed fluorescence imaging across visible/NIR-I/NIR-II has excellent potential in biomedical research. However, in vivo multiplexed imaging applications across those regions have rarely been reported due to the lack of proper fluorophores. Herein, nine squaraine dyes, which exhibit diverse adsorption and emission wavelengths, were synthesized. Among them, water-soluble SQ 710-5k and SQ 905 were found to have significant absorption differences, which allowed the tumor and lymph nodes to be identified. Then, for the first time, six-channel multiplexed fluorescence imaging across visible/NIR-I/II was achieved by coordination with reporter gene-related bioluminescent phosphors. Additional research revealed that SQ 710-5k exhibited higher-quality blood vessels and tumor imaging in NIR-II. H-aggregates SQ 905 demonstrated a high photothermal conversion efficiency for photothermal therapy. This study proposed an approach to creating small molecular dyes that coordinate with reporter gene-related bioluminescent phosphors for six-color fluorescence imaging.
Collapse
Affiliation(s)
- Ruihu Song
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yiyun Dong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoyi Zhong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meiling Lei
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Lei
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoning Jiang
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kun Qian
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Shi
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhong He
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Qin
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Wang
- Radiology department, the First Hospital of Jilin University, Changchun 130021, China
| | - Hao Chen
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
4
|
Meador WE, Lin EY, Lim I, Friedman HC, Ndaleh D, Shaik AK, Hammer NI, Yang B, Caram JR, Sletten EM, Delcamp JH. Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imaging. Nat Chem 2024; 16:970-978. [PMID: 38528102 PMCID: PMC11298278 DOI: 10.1038/s41557-024-01464-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.
Collapse
Affiliation(s)
- William E Meador
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Eric Y Lin
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Irene Lim
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Hannah C Friedman
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - David Ndaleh
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Abdul K Shaik
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | - Nathan I Hammer
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA
| | | | - Justin R Caram
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA
| | - Ellen M Sletten
- University of California Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, USA.
| | - Jared H Delcamp
- University of Mississippi, Department of Chemistry and Biochemistry, Oxford, MS, USA.
- Air Force Research Laboratory, Materials and Manufacturing Directorate (RXNC), Wright-Patterson AFB, Dayton, OH, USA.
| |
Collapse
|
5
|
Piwoński H, Nozue S, Habuchi S. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS NANOSCIENCE AU 2022; 2:253-283. [PMID: 37102065 PMCID: PMC10125152 DOI: 10.1021/acsnanoscienceau.1c00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Shortwave infrared (SWIR) fluorescence detection gradually becomes a pivotal real-time imaging modality, allowing one to elucidate biological complexity in deep tissues with subcellular resolution. The key challenge for the further growth of this imaging modality is the design of new brighter biocompatible fluorescent probes. This review summarizes the recent progress in the development of organic-based nanomaterials with an emphasis on new strategies that extend the fluorescence wavelength from the near-infrared to the SWIR spectral range and amplify the fluorescence brightness. We first introduce the most representative molecular design strategies to obtain near-infrared-SWIR wavelength fluorescence emission from small organic molecules. We then discuss how the formation of nanoparticles based on small organic molecules contributes to the improvement of fluorescence brightness and the shift of fluorescence to SWIR, with a special emphasis on the excited-state engineering of molecular probes in an aggregate state and spatial packing of the molecules in nanoparticles. We build our discussion based on a historical perspective on the photophysics of molecular aggregates. We extend this discussion to nanoparticles made of conjugated polymers and discuss how fluorescence characteristics could be improved by molecular design and chain conformation of the polymer molecules in nanoparticles. We conclude the article with future directions necessary to expand this imaging modality to wider bioimaging applications including single-particle deep tissue imaging. Issues related to the characterization of SWIR fluorophores, including fluorescence quantum yield unification, are also mentioned.
Collapse
|
6
|
Meador WE, Kapusta K, Owolabi I, Autry SA, Saloni J, Kolodziejczyk W, Hammer NI, Flynt AS, Hill GA, Delcamp JH. Ultra Bright Near‐Infrared Sulfonate‐Indolizine Cyanine‐ and Squaraine‐Albumin Chaperones: Record Quantum Yields and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- William E. Meador
- University of Mississippi Department of Chemistry and Biochemistry 38677 University UNITED STATES
| | - Karina Kapusta
- Jackson State University Department of Chemistry, Physics and Atmospheric Sciences 39217 Jackson UNITED STATES
| | - Iyanuoluwani Owolabi
- University of Southern Mississippi Department of Biological Sciences 39406 UNITED STATES
| | - Shane A. Autry
- University of Mississippi Department of Chemistry and Biochemistry 38677 UNITED STATES
| | - Julia Saloni
- Jackson State University Department of Chemistry, Physics and Atmospheric Sciences 39217 UNITED STATES
| | - Wojciech Kolodziejczyk
- Jackson State University Department of Chemistry, Physics and Atmospheric Sciences 39217 UNITED STATES
| | - Nathan I. Hammer
- University of Mississippi Department of Chemistry and Biochemistry 38677 UNITED STATES
| | - Alex S. Flynt
- University of Southern Mississippi Department of Biological Sciences 39406 UNITED STATES
| | - Glake A. Hill
- Jackson State University Department of Chemistry, Physics and Atmospheric Sciences 39217 UNITED STATES
| | - Jared Heath Delcamp
- University of Mississippi Chemistry 405 Coulter Hall 38677 University UNITED STATES
| |
Collapse
|
7
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Rao DN, Ji X, Miller SC. Silicon functionalization expands the repertoire of Si-rhodamine fluorescent probes. Chem Sci 2022; 13:6081-6088. [PMID: 35685786 PMCID: PMC9132037 DOI: 10.1039/d2sc01821g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Fluorescent dyes such as rhodamines are widely used to assay the activity and image the location of otherwise invisible molecules. Si-rhodamines, in which the bridging oxygen of rhodamines is replaced with a dimethyl silyl group, are increasingly the dye scaffold of choice for biological applications, as fluorescence is shifted into the near-infrared while maintaining high brightness. Despite intense interest in Si-rhodamines, there has been no exploration of the scope of silicon functionalization in these dyes, a potential site of modification that does not exist in conventional rhodamines. Here we report a broad range of silyl modifications that enable brighter dyes, further red-shifting, new ways to modulate fluorescence, and the introduction of handles for dye attachment, including fluorogenic labeling agents for nuclear DNA, SNAP-tag and HaloTag labeling. Modifications to the bridging silicon are therefore of broad utility to improve and expand the applications of all Si-dyes. Functionalization of the bridging silicon atom of Si-rhodamine dyes allows tuning of dye performance, the attachment of sensors, and the addition of biomolecular targeting ligands useful for the construction of live cell imaging probes.![]()
Collapse
Affiliation(s)
- Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| | - Xincai Ji
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School Worcester Massachusetts 01605 USA
| |
Collapse
|
9
|
Abstract
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the "cyanine limit" and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the "cyanine limit" problem.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
10
|
Pengshung M, Cosco ED, Zhang Z, Sletten EM. Counterion Pairing Effects on a Flavylium Heptamethine Dye. Photochem Photobiol 2022; 98:303-310. [PMID: 34592003 PMCID: PMC8930425 DOI: 10.1111/php.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Polymethine fluorophores have facilitated the advance of biological and material sciences, due to their advantageous photophysical properties. However, the need to maintain a monomeric state can severely limit the utility and processability of dyes. High concentrations of fluorophore can lead to aggregation and negate the beneficial photophysical properties of monomers. Another concern is "crossing the cyanine limit" in which delocalization within the polymethine scaffold is broken, producing the presence of an asymmetric state diminishing its photophysical behavior. Herein, we attempt to overcome these limitations by exploring anion exchange on a cationic flavylium heptamethine scaffold. By increasing the size and hydrophobicity of the anion, we can effectively tune the degree of ion pairing within the polymethine dye. Interestingly, we found that the effect of ion pairing on photophysical properties was subtle for the flavylium heptamethine scaffold in comparison to the more commonly used indolenine cyanine dye. Utilizing larger weakly coordinating anions enabled solubility of the flavylium heptamethine fluorophore in nonpolar solvents, which could otherwise not be achieved. Even with more subtle effects than classic cyanine dyes, anion exchange on flavylium polymethine dyes holds potential for further manipulation of the properties of these low energy dyes.
Collapse
Affiliation(s)
- Monica Pengshung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Emily D. Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Zhumin Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Brøndsted F, Stains CI. Heteroatom-Substituted Xanthene Fluorophores Enter the Shortwave-Infrared Region. Photochem Photobiol 2022; 98:400-403. [PMID: 34953073 PMCID: PMC8930474 DOI: 10.1111/php.13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
This article is a highlight of the paper by Ivanic and Schnermann et al. in this issue of Photochemistry and Photobiology (Daly et al. Photochem. Photobiol. 2022). The collaborative team utilized computational approaches to investigate the influence of electron-withdrawing groups at the 10' position of tetramethylrhodamine (TMR). Leveraging this information, the team was able to extend the emission of the TMR scaffold into the shortwave-infrared region (SWIR, 1000-2500 nm) by incorporation of a ketone functional group at the 10' position (Daly et al. Photochem. Photobiol. 2022). This work provides the first example of a TMR derivative with peak SWIR emission (λabs : 862 nm, λem : 1058 nm). The authors utilize the ketone rhodamine scaffold to generate fluorogenic, pH-responsive reporters. This work demonstrates the potential of the classic xanthene scaffold for use as a SWIR reporter, an important step in the ultimate expansion of the repertoire of small-molecule organic fluorophore scaffolds available for deep-tissue imaging applications.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA,University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA,Corresponding author: (Cliff I. Stains)
| |
Collapse
|
12
|
Tian C, Burgess K. Flavylium- and Silylrhodapolymethines In Excitation Multiplexing. CHEMPHOTOCHEM 2021; 5:702-704. [PMID: 36909145 PMCID: PMC9997688 DOI: 10.1002/cptc.202000287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/11/2022]
Abstract
Creation of a flavylium polymethine dye set enabled selection of two fluorophores that match common lasers for exciting in the near-IR II region. Using these, researchers cast a broad net to catch any wavelength emission in the near-IR II region, and relied on selective excitation to multiplex; this is a paradigm shift away from multiplexing via discrimination of emission wavelengths. Excitation multiplexing with flavylium dyes is a new and exciting strategy, but not yet a perfect one; it requires discrete water soluble fluorophores, including one that is turned on at 808 nm.
Collapse
Affiliation(s)
- Conghe Tian
- Department of Chemistry, Texas A&M University, Box 39912, College Station, Tx 77842 (USA)
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 39912, College Station, Tx 77842 (USA)
| |
Collapse
|
13
|
Pascal S, David S, Andraud C, Maury O. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem Soc Rev 2021; 50:6613-6658. [DOI: 10.1039/d0cs01221a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in the field of two-photon absorbing chromophores in the short-wavelength infrared spectral range (SWIR 1100–2500 nm) are summarized, highlighting the development of optical power limiting devices in this spectral range.
Collapse
Affiliation(s)
- Simon Pascal
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Sylvain David
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| |
Collapse
|
14
|
Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR. Ratiometric pH Imaging Using a 1,2-Dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals. ACS Sens 2020; 5:2925-2932. [PMID: 32829636 DOI: 10.1021/acssensors.0c01393] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of physiological pH is integral for proper whole body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, composed of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8 and 8.4, making it a viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished using both common luminescence spectroscopy and advanced optical imaging methods. Using an IVIS Spectrum, pH can be measured through tissue with Ratio-pHCL-1, which is shown in vitro and calibrated in sacrificed mouse models. Intraperitoneal injections of Ratio-pHCL-1 into live mice show high photon outputs and consistent increases in the flux ratio when measured at pH 6, 7, and 8.
Collapse
Affiliation(s)
- Lucas S. Ryan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Daphne Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Ralph P. Mason
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|