1
|
Palion-Gazda J, Kwiecień A, Choroba K, Penkala M, Erfurt K, Machura B. Effect of the Appended Morpholinyl Group on Photophysical Behavior of Mono- and Bis-cyclometalated Terpyridine Iridium(III) Chromophores. Inorg Chem 2025; 64:646-661. [PMID: 39725640 DOI: 10.1021/acs.inorgchem.4c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This paper provides extensive studies of [IrCl(Ph-py)(morph-C6H4-terpy-κ3N)]PF6 (1A), [Ir(Ph-py)2(morph-C6H4-terpy-κ2N)]PF6 (2A), [IrCl(Ph-py)(Ph-terpy-κ3N)]PF6 (1B), and [Ir(Ph-py)2(Ph-terpy-κ2N)]PF6 (2B) designed to demonstrate the possibility of controlling the photophysical properties of mono- and bis-cyclometalated complexes [IrCl(Ph-py)(R-C6H4-terpy-κ3N)]PF6 and [Ir(Ph-py)2(R-C6H4-terpy-κ2N)]PF6 through a remote electron-donating substituent introduced into the 4'-position of 2,2':6',2″-terpyridine (terpy) via the phenyl linker. The attachment of the morpholinyl (morph) group was evidenced to induce dramatic changes in the emission characteristics of the monocyclometalated Ir(III) systems with meridionally coordinated R-C6H4-terpy ligand (κ3N). In solution, the obtained complex [IrCl(Ph-py)(morph-C6H4-terpy-κ3N)]PF6 was found to be a rare example of dual-emissive Ir(III) systems. Within the series [Ir(Ph-py)2(R-C6H4-terpy-κ2N)]PF6 bearing the R-C6H4-terpy ligand bound to the central ion in a bidentate coordination mode, the appended electron-donating morpholinyl group induced a minor effect on the emission maximum, but it was found to be an effective tool for extending the excited-state lifetime, further prolonging with the increase of solvent polarity. The results of this work are of high significance for better understanding the push-pull effect and dual-emission phenomena in Ir-based luminophores, as well as developing chromophores with prolonged emission lifetimes.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Aleksandra Kwiecień
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
2
|
Peng Y, Da X, Zhou W, Xu Y, Liu X, Wang X, Zhou Q. A photo-degradable BODIPY-modified Ru(II) photosensitizer for safe and efficient PDT under both normoxic and hypoxic conditions. Dalton Trans 2024; 53:3579-3588. [PMID: 38314620 DOI: 10.1039/d3dt04063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.
Collapse
Affiliation(s)
- Yatong Peng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wanpeng Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunli Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiulian Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
3
|
Zhu L, Liu H, Dou Y, Luo Q, Gu L, Liu X, Zhou Q, Han J, Wang F. A Photoactivated Ru (II) Polypyridine Complex Induced Oncotic Necrosis of A549 Cells by Activating Oxidative Phosphorylation and Inhibiting DNA Synthesis as Revealed by Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24097756. [PMID: 37175463 PMCID: PMC10178167 DOI: 10.3390/ijms24097756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.
Collapse
Affiliation(s)
- Li Zhu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
| | - Hui Liu
- College of Applied Science and Technology, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100101, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Swedin RK, Healy AT, Schaffner JW, Kuzmin IA, Zatsikha YV, Nemykin VN, Blank DA. Outsourcing Intersystem Crossing without Heavy Atoms: Energy Transfer Dynamics in PyridoneBODIPY-C 60 Complexes. J Phys Chem Lett 2022; 13:8845-8850. [PMID: 36112145 DOI: 10.1021/acs.jpclett.2c02388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The excited state dynamics in two fully characterized pyridoneBODIPY-fullerene complexes were investigated using time-resolved spectroscopy. Photoexcitation was initially localized on the pyridoneBODIPY chromophore. The energy was rapidly transferred to the fullerene, which subsequently underwent ISC to form a triplet state and returned the energy to the pyridoneBODIPY via triplet-triplet energy transfer. This ping-pong energy transfer mechanism resulted in efficient (>85%) overall conversion of the excited state pyridoneBODIPY constituent despite a complete lack of ISC in the pyridoneBODIPY in the absence of the fullerene partner. The small difference in attachment chemistry for the fullerene did not impact the initial singlet energy transfer. However, the N-methylpyrrolidine bridge did slow both the triplet-triplet energy transfer and the ultimate relaxation rate of the final triplet state when compared to an isoxazole-based bridge. The rates of each step were quantified, and computational predictions were used to complement the proposed mechanism and energetics. The result demonstrated efficient triplet sensitization of a strong chromophore that lacks significant spin-orbit coupling.
Collapse
Affiliation(s)
- Rachel K Swedin
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew T Healy
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jacob W Schaffner
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Ilya A Kuzmin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuriy V Zatsikha
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Enamine Ltd., Chervonotkatska Street 73, Kyiv 02094, Ukraine
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David A Blank
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Lu X, Xiong C, Li B, Du W, Li D, Ma W, Tian X, Tian Y, Zhang Q. Three-photon absorption iridium( iii) photosensitizers featuring aggregation induced emission. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00081d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ir-H exhibits better three-photon absorption aggregation induced emission property, and thus can enhance the photodynamic therapy efficiency.
Collapse
Affiliation(s)
- Xin Lu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R., China
| | - Chaoya Xiong
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wenli Du
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R., China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R., China
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R., China
- State Key Laboratory of Coordination Chemistry, Nanjing University, P. R. China
| | - Qiong Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R., China
- State Key Laboratory of Coordination Chemistry, Nanjing University, P. R. China
| |
Collapse
|
6
|
Da X, Wang Z, Jian Y, Zhang C, Hou Y, Yao Y, Wang X, Zhou QX. A targeted and efficient CDT system with photocatalytic supplement of H2O2 and hydroxyl radical production at a neutral pH. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bottleneck problems of chemodynamic therapy (CDT) are the dependence on an acidic pH (2.0-4.0), insufficient H2O2 level in tumor tissues and potential systematic toxicity of inorganic nanomaterials-based CDT agents....
Collapse
|
7
|
Da X, Yu FH, Zhang C, Wang Z, Jian Y, Hou Y, Yong C, Wang X, Zhou QX. Bioorthogonal Assembly Based on Metallophilic Interactions for Selective Imaging and PDT Treatment of Cancer Cells. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00147k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise control of the luminescence and singlet oxygen generation is important for selective photo-theranostics applications. In this work, bioorthogonal assembly based on d10···d10 metallophilic interactions was first proposed for selective...
Collapse
|
8
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 774] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Fan Z, Xie J, Sadhukhan T, Liang C, Huang C, Li W, Li T, Zhang P, Banerjee S, Raghavachari K, Huang H. Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy. Chemistry 2021; 28:e202103346. [PMID: 34755401 DOI: 10.1002/chem.202103346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Can Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
10
|
Jin Z, Qi S, Guo X, Jian Y, Hou Y, Li C, Wang X, Zhou Q. Pyrene modification enables enhanced two-photon excited ligand dissociation of a Ru(II) complex containing monodentate ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Qi S, Jin Z, Jian Y, Hou Y, Li C, Zhao Y, Wang X, Zhou Q. Photo-induced mitochondrial DNA damage and NADH depletion by -NO 2 modified Ru(II) complexes. Chem Commun (Camb) 2021; 57:4162-4165. [PMID: 33908442 DOI: 10.1039/d1cc00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two mitochondria-localized Ru(ii) complexes with photo-labile ligands were reported to exert one- and two-photon activatable anticancer activity through a dual-function mechanism, i.e. mitochondrial DNA covalent binding after photo-induced ligand dissociation and photo-catalyzed NADH depletion, thus displaying good activity towards cisplatin-resistant cancer cells under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Qi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yao Zhao
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
12
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
13
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
14
|
Jin Z, Qi S, Guo X, Jian Y, Hou Y, Li C, Wang X, Zhou Q. The modification of a pyrene group makes a Ru(ii) complex versatile. Chem Commun (Camb) 2021; 57:3259-3262. [DOI: 10.1039/d0cc08400j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A versatile Ru(ii) complex with self-reporting ligand photo-dissociation and efficient two-photon excited synergistic PACT and PDT abilities was designed and studied.
Collapse
Affiliation(s)
- Zhihui Jin
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Shuang Qi
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xusheng Guo
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yao Jian
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
15
|
Chen K, Hussain M, Razi SS, Hou Y, Yildiz EA, Zhao J, Yaglioglu HG, Donato MD. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet-Triplet-Annihilation Upconversion. Inorg Chem 2020; 59:14731-14745. [PMID: 32864961 DOI: 10.1021/acs.inorgchem.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 μs/87% and 18.2 μs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 μs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 μs (Pt-2An) or 163 μs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 μs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).
Collapse
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Syed S Razi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.,Department of Chemistry, Gaya College, Gaya, Constituent Unit of Magadh University, Bodhgaya, Bihar 823001, India
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Halime Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy, via North Carrara 1, Sesto Fiorentino, Florence 50019, Italy.,ICCOM-CNR via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|