1
|
Jin Z, Li Q, Zhu M, Zhang Y, Yan X, Zhou X. Palladium-catalyzed carbon-carbon bond cleavage of primary alcohols: decarbonylative coupling of acetylenic aldehydes with haloarenes. RSC Adv 2025; 15:7826-7831. [PMID: 40070398 PMCID: PMC11895861 DOI: 10.1039/d5ra00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the current work, a palladium-catalyzed C-C bond cleavage reaction of primary alcohols has been developed. This transformation was characterized by a broad substrate scope, superior functional group tolerance, and high efficiency for selective C-C bond cleavage and was then followed by alkynyl-aryl cross coupling. Mechanism studies indicated that the propargyl alcohols underwent β-H elimination to form aldehydes rather than having undergone β-C elimination. The corresponding aldehyde intermediates then proceeded through a decarbonylation and coupling reaction with haloarenes to yield diarylacetylenes.
Collapse
Affiliation(s)
- Zewei Jin
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
2
|
Doraghi F, Rezainia L, Morshedsolouk MH, Navid H, Larijani B, Mahdavi M. Transition metal-catalyzed cross-coupling reactions of N-aryl-2-aminopyridines. RSC Adv 2025; 15:1134-1151. [PMID: 39811017 PMCID: PMC11729220 DOI: 10.1039/d4ra08384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Due to the presence of the pyridyl directing group, N-aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed via this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of N-aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Lina Rezainia
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Mohammad Hossein Morshedsolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Hamed Navid
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Tao Q, Zhang H, Ye R, Zhang Y, Long Y, Zhou X. Palladium-Catalyzed Synthesis of β-Alkynyl Ketones via Selective 1,3-Alkynyl Migration of α,α-Disubstituted Allylic Alcohols. J Org Chem 2024; 89:13208-13214. [PMID: 39213500 DOI: 10.1021/acs.joc.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, a palladium-catalyzed 1,3-alkynyl migration of allylic alcohol for the synthesis of β-alkynyl ketone was described. This intramolecular rearrangement reaction demonstrated an enhanced reactivity compared to the traditional intermolecular alkynylation by circumventing the dimerization of alkynes, exhibiting a specific selectivity toward β-alkynyl elimination. Moreover, this reaction featured wide substrate scope, good functional group tolerance, and 100% atom economy.
Collapse
Affiliation(s)
- Qinyue Tao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Haoxiang Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Runyou Ye
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Long
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, Nanchong 637000, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
4
|
Ye R, Zhu M, Yan X, Long Y, Xia Y, Zhou X. Pd(II)-Catalyzed C═C Bond Cleavage by a Formal Group-Exchange Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Runyou Ye
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Long
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Luo J, Fu Q. Aldehyde‐Directed C(
sp
2
)−H Functionalization under Transition‐Metal Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junfei Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 P. R. China
- Department of Pharmacy The Affiliated Hospital of Southwest Medical University Luzhou 646000 P. R. China
| |
Collapse
|
6
|
Wang ZH, Wang H, Wang H, Li L, Zhou MD. Ruthenium(II)-Catalyzed C–C/C–N Coupling of 2-Arylquinazolinones with Vinylene Carbonate: Access to Fused Quinazolinones. Org Lett 2021; 23:995-999. [DOI: 10.1021/acs.orglett.0c04200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhao-Hui Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Hua Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Lei Li
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| |
Collapse
|
7
|
Hu Y, Ma X, Hou H, Sun W, Tu S, Wu M, Lin R, Xu X, Ke F. Electrochemical oxidative synthesis of 2-benzoylquinazolin-4(3 H)-one via C(sp 3)–H amination under metal-free conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01230d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemically induced C(sp3)–H amination of 2-aminobenzamides with ketones using TBAI as a catalyst was developed, and provided 2-benzoylquinazolin-4(3H)-ones under metal-free conditions.
Collapse
Affiliation(s)
- Yongzhi Hu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Shuqing Tu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Mei Wu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Rongkun Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
8
|
Azizollahi H, García-López JA. Recent Advances on Synthetic Methodology Merging C-H Functionalization and C-C Cleavage. Molecules 2020; 25:E5900. [PMID: 33322116 PMCID: PMC7764206 DOI: 10.3390/molecules25245900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The functionalization of C-H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C-H bonds along with the cleavage of C-C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C-C bond takes place, basically attending to the scission of strained or unstrained C-C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C-H and C-C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
| | | |
Collapse
|