1
|
Bityukov OV, Serdyuchenko PY, Kirillov AS, Nikishin GI, Vil’ VA, Terent’ev AO. Advances in radical peroxidation with hydroperoxides. Beilstein J Org Chem 2024; 20:2959-3006. [PMID: 39600957 PMCID: PMC11590016 DOI: 10.3762/bjoc.20.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Organic peroxides have become sought-after functionalities, particularly following the multi-tone consumption in polymer production and success in medicinal chemistry. The selective introduction of a peroxide fragment at different positions on the target molecule is a priority in the modern reaction design. The pioneering Kharasch-Sosnovsky peroxidation became the basic universal platform for the development of peroxidation methods, with its great potential for rapid generation of complexity due to the ability to couple the resulting free radicals with a wide range of partners. This review discusses the recent advances in the radical Kharasch-type functionalization of organic molecules with OOR fragment including free-component radical couplings. The discussion has been structured by the type of the substrate of radical peroxidation: C(sp 3 )-H substrates; aromatic systems; compounds with unsaturated C-C or C-Het bonds.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Jiang YF, Ouyang WT, Ji HT, Hou JC, Li T, Luo QX, Wu C, Ou LJ, He WM. Phototriggered Self-Catalyzed Phosphorylation of 3,4-Dihydroquinoxalin-2(1 H)-ones with Diarylphosphine Oxides in EtOH. J Org Chem 2024; 89:13970-13977. [PMID: 39298438 DOI: 10.1021/acs.joc.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A highly effective external photocatalyst- and additive-free method for the phosphorylation of 3,4-dihydroquinoxalin-2(1H)-ones to produce phosphorylated dihydroquinoxalin-2(1H)-ones has been reported. A wide variety of phosphorylated products were formed in good to excellent yields. Preliminary mechanistic studies reveal that the phosphorylation process involves an EnT process, a SET process, a HAT process, and a deprotonation process.
Collapse
Affiliation(s)
- Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qing-Xia Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Kumar A, Khatun GN, Fernandes RA. TBAI-Catalyzed Regioselective Hydroxyperoxidation of 1-Aryl/Alkyl-1,3-dienes. Org Lett 2023. [PMID: 37267087 DOI: 10.1021/acs.orglett.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An efficient, mild, and economical approach for regioselective synthesis of 4-aryl/alkyl-1-peroxy-but-3-en-2-ols from 1-substituted-1,3-butadienes using hydroperoxides and catalyzed by TBAI has been developed. This method can be executed in a simple operation with no dry conditions required and having tolerance to a wide range of substrates to access corresponding hydroxyperoxidates in good yields. Thus, an excellent regioselective orthogonal dioxygenation in a diene system has been achieved.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
4
|
Shaikh MA, Samal PP, Ubale AS, Krishnamurty S, Gnanaprakasam B. Lewis Acid-Catalyzed Chemodivergent and Regiospecific Reaction of Phenols with Quaternary Peroxyoxindoles. J Org Chem 2022; 87:14155-14167. [PMID: 36269888 DOI: 10.1021/acs.joc.2c01701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indium-catalyzed regiospecific coupling of substituted phenol derivatives and quaternary peroxyoxindoles for the synthesis of C2 or C4 benzoxazin-3-one-substituted phenols via skeletal rearrangement is described. This reaction is demonstrated with 17 examples with good yields and diverse aryl substituents. In contrast to the indium-catalyzed reaction, the Cu(OTf)2-catalyzed reaction of the phenol with quaternary peroxyoxindoles afforded C2 or C4 2-oxindole-substituted phenol derivatives. This diverse catalytic reaction generated various biologically important phenol-substituted 2-oxindole derivatives directly without any skeleton rearrangement and was demonstrated with 19 examples in high yield. The regiospecificity and the reaction pathways were explained with the support of density functional theory (DFT).
Collapse
Affiliation(s)
- Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Pragnya Paramita Samal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Sailaja Krishnamurty
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
5
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
6
|
Xu H, Lou X, Xie J, Qin Z, He H, Gao X. Regioselective Approach to β-Peroxyl Alcohols and Ethers from Alkenes. J Org Chem 2022; 87:9957-9968. [PMID: 35829642 DOI: 10.1021/acs.joc.2c00954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A different regioselective three-component reaction of alkenes, oxygen sources, and hydroperoxides mediated by ammonium iodine to α-oxyperoxidates has been developed. Mechanistic studies demonstrated that regioselective radical addition and subsequent SN2 nucleophilic substitution were possible for the formation of products. In addition to the traditional pathway of SN2 reaction, that is, where nucleophiles attack the α-C atoms at the back side, an additional unusual transition configuration with the H2O molecule attacking the α-C atom at the front side was obtained.
Collapse
Affiliation(s)
- Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xinyao Lou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Junrang Xie
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ze Qin
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| |
Collapse
|
7
|
Tammisetti R, Hong BC, Chien SY, Lee GH. Stereoselective Cyclization Cascade of Dihydroquinoxalinones by Visible-Light Photocatalysis: Access to the Polycyclic Quinoxalin-2(1 H)-ones. Org Lett 2022; 24:5155-5160. [PMID: 35802069 DOI: 10.1021/acs.orglett.2c01991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An intriguing stereoselective visible-light photocatalysis of dihydroquinoxalinone derivatives has been realized via cyclization with or without the solvolysis cascade. The reactions provided the polycyclic ring structures with efficient formation of multiple bonds and with high stereoselectivity. X-ray crystallography unequivocally determined the structures of five polycyclic products.
Collapse
Affiliation(s)
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
8
|
Ionic liquid-catalyzed synthesis of (1,4-benzoxazin-3-yl) malonate derivatives via cross-dehydrogenative-coupling reactions. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A convenient C(sp3)–C(sp3) oxidative dehydrogenative coupling reaction of 1,4-benzoxazin-2-ones with malonate esters was developed under mild conditions to obtain the respective ester malonates in high yields. Reactions take place in [omim]FeCl4, acting as both the solvent and the catalyst. Under [omim]Cl/FeCl3-DDQ conditions, derivatives of 1 coupled with malonate 2 to give the target molecules within 1–2 h time periods. The ionic liquid was recovered and reused in the next reactions without losing its efficiency.
Collapse
|
9
|
Shaikh MA, Ubale AS, Gnanaprakasam B. Indium Catalyzed Sequential Regioselective Remote C−H Indolylation and Rearrangement Reaction of Peroxyoxindole. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moseen A. Shaikh
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Akash S. Ubale
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Boopathy Gnanaprakasam
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
10
|
Wan S, Wang J, Huo C. Copper catalyzed aerobic oxidative amination of 3,4-dihydroquinoxalin-2(1H)-ones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|