1
|
Li M, Yu Z, Sun Z, Liu Y, Sha S, Li J, Ge R, Dai L, Liu B, Fu Q, Li W. An efficient hydrogen evolution catalyst constructed using Pt-modified Ni 3S 2/MoS 2 with optimized kinetics across the full pH range. NANOSCALE 2025; 17:3189-3202. [PMID: 39718342 DOI: 10.1039/d4nr03811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Electrocatalyst materials play a crucial role in determining the efficiency of the hydrogen evolution reaction (HER), directly influencing the overall effectiveness of energy conversion technologies. Ni3S2/MoS2 heterostructures hold substantial promise as bifunctional catalysts, owing to their synergistic electronic characteristics and plentiful active sites. However, their catalytic efficacy is impeded by the relatively elevated chemisorption energy of hydrogen-containing intermediates, which constrains their functionality in different pH environments. In order to mitigate this limitation, trace amounts of Pt are introduced into the heterostructure, intending to enhance electronic transport and refining chemisorption energies, thereby facilitating significant enhancements in both HER and oxygen evolution reaction (OER) activities over a wide pH range. It is revealed that the Pt-modified catalyst achieves exceptional HER performance, requiring merely 64 mV and 83 mV overpotentials to attain a current density of 100 mA cm-2 in acidic and alkaline media, respectively. Furthermore, theoretical simulations corroborate that Pt modification optimizes local electronic configurations and augments electronic transfer, contributing to its superior catalytic performance. This investigation underscores the pivotal role of Pt modification in propelling the practical application of Ni3S2/MoS2 heterostructures as highly efficient and pH-universal bifunctional catalysts.
Collapse
Affiliation(s)
- Maoyuan Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhongrui Yu
- Shanghai Electric Hency Solar Technology Co., Ltd, Shanghai Electric Power Generation Group, Shanghai, 201199, China
| | - Zulin Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuchen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Simiao Sha
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiancheng Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Riyue Ge
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Qingqiao Fu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Wenxian Li
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Jung HY, Park JH, Ro JC, Suh SJ. Fabrication of Trimetallic Fe-Co-Ni Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. ACS OMEGA 2022; 7:45636-45641. [PMID: 36530268 PMCID: PMC9753111 DOI: 10.1021/acsomega.2c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The development of inexpensive and well-activated water-splitting catalysts is required to reduce the use of conventional fossil fuels. In this study, a trimetallic Fe-Co-Ni catalyst was fabricated using a simple ion electrodeposition method. The metal deposition was performed using cyclic voltammetry, which was more efficient than constant-voltage deposition and significantly increased the stability of the catalyst. The synthesized material presented the morphology of a nanoflower in which the nanosheets were agglomerated. The Fe-Co-Ni catalyst exhibited excellent oxygen evolution reaction (OER) properties because the charge-transfer rate was improved owing to the synergistic effect of the metals. The OER was performed in a 1 M KOH solution using a three-electrode system, and the overpotential was 302 mV at 100 mA/cm2. In addition, the Fe-Co-Ni catalyst exhibited excellent stability in alkaline solution for more than 48 h at 200 mA/cm2. The results show that the method for preparing Fe-Co-Ni significantly improves its catalytic activity, and the resulting material could be used as an economical and efficient catalyst in future.
Collapse
|
3
|
Wang H, Ren J, Wang A, Wang Q, Zhao W, Zhao L. Synergistic catalysis of graphitic carbon nitride supported bimetallic sulfide nanostructures for efficient oxygen generation. Chem Commun (Camb) 2022; 58:9202-9205. [PMID: 35894838 DOI: 10.1039/d2cc03619c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of g-C3N4 supported bimetallic sulfide nanostructures (Ni3S2/MoS2/ng-C3N4, n = 10, 20 and 30) was prepared by a hydrothermal method and subsequently a thermal annealing approach. Ni3S2/MoS2/20g-C3N4 with controlled composition exhibits efficient OER activity with a low overpotential of 183 mV at 10 mA cm-2, which outperforms the vast majority of sulfide OER electrocatalysts reported previously.
Collapse
Affiliation(s)
- Huixian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jinshen Ren
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
4
|
Li K, Tong Y, Feng D, Chen P. Fluorine-anion engineering endows superior bifunctional activity of nickel sulfide/phosphide heterostructure for overall water splitting. J Colloid Interface Sci 2022; 625:576-584. [PMID: 35749852 DOI: 10.1016/j.jcis.2022.06.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Designing advanced transition metal-based materials for electrocatalytic water splitting is of significance, but their wide application is still limited due to the lack of an effective regulation strategy. Herein, a synergistic regulation strategy of surface/interface is developed to optimize the catalytic activity of nickel sulfide (Ni3S2). The construction of nickel phosphide with Ni3S2 heterostructure by using fluorine (F)-anion modification is successfully developed on nickel foam (F-NiPx/Ni3S2-NF) via a simple fluorination and phosphating treatment. This new kind of electrocatalyst contains plenty of active sites and strong electronic interactions, presenting superior bifunctional activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials only need 182 mV and 370 mV to reach the current density of 100 mA cm-2 for HER and OER, respectively. In addition, the F-NiPx/Ni3S2-NF-based electrolyzer delivers promising performance for overall water splitting. A low potential of 1.55 V and 1.7 V can be achieved at the current density of 10 mA cm-2 and 50 mA cm-2. This work provides a new surface/interface regulation strategy for high-efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Dongmei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengzuo Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Efficient OER nanocomposite electrocatalysts based on Ni and/or Co supported on MoSe2 nanoribbons and MoS2 nanosheets. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
6
|
Zhu M, Yan Q, Bai X, Cai H, Zhao J, Yan Y, Zhu K, Ye K, Yan J, Cao D, Wang G. Construction of reduced graphene oxide coupled with CoSe 2-MoSe 2 heterostructure for enhanced electrocatalytic hydrogen production. J Colloid Interface Sci 2022; 608:922-930. [PMID: 34785467 DOI: 10.1016/j.jcis.2021.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 01/11/2023]
Abstract
It is important to develop novel energy to solve energy shortage and environmental problems. Hydrogen evolution reaction (HER) is envisaged as a viable technology that can be used to develop sustainable clean energy. Herein, we report a catalyst with CoSe2-MoSe2 heterostructure grown on reduced graphene oxide with an optimum Co/Mo proportion of 1:1 (CoSe2-MoSe2(1-1)/rGO). It exhibits good HER activities in both acidic and alkaline conditions. The CoSe2-MoSe2(1-1)/rGO shows an overpotential of 107 mV at 10 mA cm-2 with a Tafel slope of 56 mV dec-1 under acidic condition. Meanwhile, CoSe2-MoSe2(1-1)/rGO also presents an overpotential of 182 mV at 10 mA cm-2 and with a Tafel slope of 89 mV dec-1 under alkaline condition. These impressive performances of the catalyst are mainly due to the excellent electronic transmission capability of rGO and the abundant active sites of CoSe2-MoSe2 heterostructure as well as the optimized hydrogen adsorption energy of CoSe2-MoSe2 interface. The design of CoSe2-MoSe2(1-1)/rGO provides a meaningful guide for manufacturing electrode in energy storage and conversion.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qing Yan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaojing Bai
- College of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan 455000, PR China
| | - Hao Cai
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yongde Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| |
Collapse
|
7
|
Wang K, Li B, Ren J, Chen W, Cui J, Wei W, Qu P. Ru@Ni 3S 2 nanorod arrays as highly efficient electrocatalysts for the alkaline hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00673a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ru-decorated Ni3S2 nanorod arrays demonstrate an superior alkaline hydrogen evolution performance. Further modification with polyaniline could significantly enhance the long-term stability for continuous hydrogen generation.
Collapse
Affiliation(s)
- Kefeng Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Bin Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jingxiao Ren
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Wenxia Chen
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Jinhai Cui
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Peng Qu
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Yu X, Xu S, Wang Z, Wang S, Zhang J, Liu Q, Luo Y, Du Y, Sun X, Wu Q. Self-supported Ni 3S 2@Ni 2P/MoS 2 heterostructures on nickel foam for an outstanding oxygen evolution reaction and efficient overall water splitting. Dalton Trans 2021; 50:15094-15102. [PMID: 34610629 DOI: 10.1039/d1dt03023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogen production by electrocatalytic water splitting is a pollution-free, energy-saving, and efficient method. The low efficiency of hydrogen production, high overpotentials and expensive noble-metal catalysts have limited the development of hydrogen production from electrocatalytic water splitting. Therefore, the exploration of bifunctional electrocatalysts for water overall splitting to produce hydrogen is of profound significance. Herein, Ni3S2@Ni2P/MoS2 heterostructure electrocatalysts were synthesized on Ni foam through an environmentally friendly hydrothermal method and low-temperature phosphating method. The synergistic effects between different components and the mutual substitution principle between sulfur atoms and phosphorus atoms greatly improve the OER performance of the electrocatalyst. It is also an effective strategy to optimize the adsorption energies of intermediates by the design of heterostructured catalysts composed of multiple substances. Ni3S2@Ni2P/MoS2 only requires a low overpotential (η10) of 175 mV at a current density of 10 mA cm-2 in 1.0 M KOH solution and the stable duration exceeds 40 h. In addition, this heterogeneous structure is assembled into an electrolytic cell for overall water splitting, which exhibits a low cell voltage of 1.61 volts and retains the robust stability over 30 h at 10 mA cm-2. The Ni3S2@Ni2P/MoS2 heterostructure prepared in this research provides a strategy for exploring other heterostructured electrocatalysts with different components.
Collapse
Affiliation(s)
- Xin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Siran Xu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Shan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Jing Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Qian Liu
- Institute of Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Yonglan Luo
- Institute of Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qi Wu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
9
|
Mei Y, Li TT, Qian J, Li H, Wu M, Zheng YQ. Construction of a C@MoS 2@C sandwiched heterostructure for accelerating the pH-universal hydrogen evolution reaction. Chem Commun (Camb) 2020; 56:13393-13396. [PMID: 33034592 DOI: 10.1039/d0cc06049f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein a facile and versatile hydrothermal method has been developed to construct a polypyrrole-derived carbon nanotube (PCN), MoS2 nanosheets and a carbon shell integrated sandwich-like heterostructure (PCN@MoS2@C). This heterostructure shows excellent performance in the hydrogen evolution reaction (HER) over a wide pH range. The results indicate that the porous carbon shell coated heterostructure provides MoS2 nanosheets with sufficient conductivity, increased number of active sites, and strong structural stability, and thus boosts its HER performance.
Collapse
Affiliation(s)
- Yan Mei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Jinjie Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Hongwei Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Miao Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Yue-Qing Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|