Contrasting behaviour under pressure reveals the reasons for pyramidalization in tris(amido)uranium(III) and tris(arylthiolate) uranium(III) molecules.
Nat Commun 2022;
13:3931. [PMID:
35798750 PMCID:
PMC9262880 DOI:
10.1038/s41467-022-31550-7]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
A range of reasons has been suggested for why many low-coordinate complexes across the periodic table exhibit a geometry that is bent, rather a higher symmetry that would best separate the ligands. The dominating reason or reasons are still debated. Here we show that two pyramidal UX3 molecules, in which X is a bulky anionic ligand, show opposite behaviour upon pressurisation in the solid state. UN″3 (UN3, N″ = N(SiMe3)2) increases in pyramidalization between ambient pressure and 4.08 GPa, while U(SAr)3 (US3, SAr = S-C6H2-tBu3−2,4,6) undergoes pressure-induced planarization. This capacity for planarization enables the use of X-ray structural and computational analyses to explore the four hypotheses normally put forward for this pyramidalization. The pyramidality of UN3, which increases with pressure, is favoured by increased dipole and reduction in molecular volume, the two factors outweighing the slight increase in metal-ligand agostic interactions that would be formed if it was planar. The ambient pressure pyramidal geometry of US3 is favoured by the induced dipole moment and agostic bond formation but these are weaker drivers than in UN3; the pressure-induced planarization of US3 is promoted by the lower molecular volume of US3 when it is planar compared to when it is pyramidal.
The reasons for which many low-coordinate complexes exhibit bent geometry, rather than a higher symmetry, are still under debate. Here, the authors use high-pressure crystallography to examine whether low-coordinate f-block molecules become more planar or pyramidal under pressure; which happens is dictated by the dipole moment of the complex and the volume of the planar form.
Collapse