1
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
2
|
Gao C, Sun Z, Zhu N, Han H, Li Z, Gu C, Yang Y, Xin X, Qiu Q, Yang W, Wang G, Jin Q. Synthesis, characterization and discussion of two copper(I) complexes with different luminescent properties under the influence of multiple weak forces. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2145959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chengjie Gao
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhenzhou Sun
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing, China
| | - Xiulan Xin
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Qiming Qiu
- School of Science, China University of Geosciences, Beijing, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
3
|
Hu FZ, Zhang L, Jin GY, Sun ZZ, Wang G, Han HL, Li ZF, Yang YP, Jin QH, Zhang F. Synthesis, spectral properties and terahertz time domain spectroscopy of two copper(I) complexes based on bisphosphine and bisazo ligands. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fu-Zhen Hu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Lan Zhang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Guan-Yu Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhen-Zhou Sun
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Fan Zhang
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Sun ZZ, Zhu N, Pan X, Wang G, Yang Y, Qiu QM, Li ZF, Xin XL, Liu JM, Li XQ, Jin Q, Ren ZG, Zhou Q. Designing luminescent diimine-Cu (I)-phosphine complexes by tuning N-ligand and counteranions: correlation of weak interactions, luminescence and THz absorption spectra. CrystEngComm 2022. [DOI: 10.1039/d1ce01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, six new [Cu(N^N)(P^P)]+/0 complexes with different N-ligand and counteranions [Cu2(dmp)2(bdppmapy)I2] (1), [Cu2(dmp)2(bdppmapy)(CN)2]·3CH3OH (2), [Cu(dmp)(bdppmapy)](BF4) (3), [Cu(dmp)(bdppmapy)](ClO4) (4), [Cu(phen)(bdppmapy)](BF4) (5), [Cu(phen)(bdppmapy)](ClO4) (6) have been synthesized and characterized (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine,...
Collapse
|
5
|
Sun ZZ, Zhu N, Pan X, Wang G, Li ZF, Xin XL, Han HL, Feng YB, Jin QH, Yang YP, Yang W. A new application of terahertz time-domain absorption spectra in luminescent complexes: characterization of the C-Hπ weak interactions in Cu(I) complexes. Dalton Trans 2021; 50:10214-10224. [PMID: 34232237 DOI: 10.1039/d1dt01023a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Six Cu(i) complexes, [Cu(2,3-f)(bdppmapy)]BF4 (1), [Cu(2,3-f)(bdppmapy)]ClO4 (2), [Cu(2,3-f)(bdppmapy)]CF3SO3 (3), [Cu(imidazo[4,5-f])(bdppmapy)]BF4 (4), [Cu(imidazo[4,5-f])(bdppmapy)]ClO4 (5), and [Cu(imidazo[4,5-f])(bdppmapy)]CF3SO3·MeOH (6·MeOH) (bdppmapy = N,N-bis[(diphenylphosphino)methyl]-2-pyridinamine, 2,3-f = pyrazine[2,3-f][1,10]-phenanthroline, and imidazo[4,5-f] = 1H-imidazo[4,5-f][1,10]-phenanthroline), have been synthesized to explore the effects of counteranions on their crystal structures, photophysical properties, and terahertz (THz) spectra. Time-dependent density functional theory (TD-DFT) shows that the luminescence performance of these complexes is attributed to the metal-to-ligand charge transfer (MLCT) in combination with ligand-to-ligand charge transfer (LLCT). In complexes 1-3, the characteristic peak at 1.4 THz is mainly related to the C-Hπ interaction formed by the H atom on the 4#/5# position of 2,3-f and the benzene ring from the bdppmapy on the adjacent asymmetric unit. The common C-Hπ interaction enhances the rigidity of the structure and has non-negligible influence on the photoluminescence quantum yields (PLQYs): the stronger the C-Hπ interaction is, the higher the quantum yield (QY) is. In complexes 4-6, similar absorption peaks (1.10-1.30 THz) are mainly related to the C-Hπ interactions, and strong absorption peaks (1.50-1.90 THz) are affected by the typical hydrogen bonds N-HF/O and O-HO. These results show that some weak interactions can be characterized by THz time-domain spectroscopy (THz-TDS). So, the THz spectroscopy method would make it possible to tune some of the weak interactions in complex structures to regulate the luminescence of materials.
Collapse
Affiliation(s)
- Zhen-Zhou Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Xiu-Lan Xin
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yue-Bing Feng
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, P. R. China.
| |
Collapse
|
6
|
Li ZX, Kuang XN, Wang G, Zhu N, Sun ZZ, Han HL, Yang YP, Li ZF, Xin XL, Jin QH, Ren ZG. A series of luminescent Cu( i) complexes based on the diphosphine ligand and diimine ligand: weak intermolecular interactions, terahertz spectroscopy and photoproperties. CrystEngComm 2021. [DOI: 10.1039/d1ce01132d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Counter-ions can regulate the luminescence of complexes by changing the weak intermolecular interactions, which can be observed by THz spectroscopy.
Collapse
Affiliation(s)
- Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiao-Nan Kuang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhen-Zhou Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yu-Ping Yang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiu-Lan Xin
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
A new polymorph of six-coordinated bis(5,5′-dimethyl-2,2′-bipyridine) nitratocopper(II) nitrate and its DNA interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Alkan-Zambada M, Constable EC, Housecroft CE. The Role of Percent Volume Buried in the Characterization of Copper(I) Complexes for Lighting Purposes. Molecules 2020; 25:molecules25112647. [PMID: 32517264 PMCID: PMC7321245 DOI: 10.3390/molecules25112647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
The usefulness of percent volume buried (%Vbur) as a readily quantifiable property is investigated with regard to [Cu(NN)(PP)]+ complexes of interest for lighting purposes. Photoluminescence quantum yields (PLQYs) and single crystal X-ray structures of 100 reported compounds were assembled, %Vbur of the ligand systems were calculated and analyzed for correlations. We found that increased shielding of the central Cu(I) cation relying on shared contributions of both (NN) and (PP) ligand systems led to increased PLQYs. These findings are of relevance for future characterizations of Cu(I)-based complexes and their photophysical behavior in the solid-state.
Collapse
Affiliation(s)
- Murat Alkan-Zambada
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015 Lausanne, Switzerland
- Correspondence:
| | - Edwin C. Constable
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; (E.C.C.); (C.E.H.)
| | - Catherine E. Housecroft
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; (E.C.C.); (C.E.H.)
| |
Collapse
|
9
|
Pan X, Kuang XN, Zhu N, Wang G, Yang YP, Liu JM, Li ZF, Xin XL, Han HL, Jin QH, Ren ZG, Zhang JW. Terahertz time-domain absorption spectra of Cu(i) complexes bearing tetraphosphine ligands: the bridge between the C–H⋯π and π⋯π interactions and photoluminescence properties. Dalton Trans 2020; 49:14941-14950. [DOI: 10.1039/d0dt02542a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The terahertz spectrum bridges the luminescence and C–H⋯π and π⋯π interactions of Cu(i) complexes.
Collapse
|