1
|
Kinzhalov MA, Kinzhalova EI, Karnoukhova VA, Ananyev IV, Gomila RM, Frontera A, Kukushkin VY, Bokach NA. Triiodide-Based Chair-Like Copper Complex Assembled by Halogen Bonding. Inorg Chem 2024; 63:191-202. [PMID: 38108293 DOI: 10.1021/acs.inorgchem.3c02990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cocrystallization of the dimeric [Cu2(μ-I)2(CNXyl)4] (Xyl = 2,6-Me2C6H3, 1) and polymeric catena-[Cu(μ-I)(CNC6H3-2-Cl-6-Me)2] (2) complexes with I2 at different molar ratios between the reactants resulted in a series of (RNC)2CuI-based crystal polyiodides formed along with gradual accumulation of iodine, namely the cocrystals [1·I2]·[Cu(μ1,1-I3)(CNXyl)2]2 followed by the generation of [Cu(μ1,3-I3)(CNXyl)2]2·2I2 (5·2I2) or [Cu(μ1,1-I3)(CNC6H3-2-Cl-6-Me)2]2 and then [Cu(μ1,3-I3)(CNC6H3-2-Cl-6-Me)2]n·n/2I2. The polyiodide 5·2I2 exhibits a novel supramolecular motif─a purely inorganic halogen-bonded Cu2(μ1,3-I3)2 core in the chair conformation. The X-ray structure of 5·2I2 featuring I···I contacts was analyzed by a set of theoretical methods and attributed to moderately strong halogen bonding (from -3.2 to -3.9 kcal/mol); these interactions determine the supramolecular architecture of 5·2I2.
Collapse
Affiliation(s)
- Mikhail A Kinzhalov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Av., Tomsk 634050, Russian Federation
| | - Ekaterina I Kinzhalova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Valentina A Karnoukhova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, Moscow 119991, Russian Federation
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, Palma de Mallorca 07122, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, Palma de Mallorca 07122, Baleares, Spain
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., Chelyabinsk 454080, Russian Federation
| | - Nadezhda A Bokach
- Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Av., Tomsk 634050, Russian Federation
| |
Collapse
|
2
|
Geyl KK, Baykov SV, Kasatkina SO, Savko PY, Boyarskiy VP. Reaction of coordinated isocyanides with substituted N-(2-pyridyl) ureas as a route to new cyclometallated Pd(II) complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Petrov PA, Filippova EA, Sukhikh TS, Novikov AS, Sokolov MN. Sterically Hindered Tellurium(IV) Catecholate as a Lewis Acid. Inorg Chem 2022; 61:9184-9194. [PMID: 35657161 DOI: 10.1021/acs.inorgchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterically hindered tellurium catecholate Te(Cat36)2 (Cat36 = 3,6-di-tert-butyl-catecholate) was synthesized with the reaction of amorphous Te with 3,6-di-tert-butyl-o-benzoquinone. Adducts of Te(Cat36)2 with various O- and N-donors were isolated and characterized by means of single-crystal X-ray diffraction along with IR, UV-vis, and NMR (1H, 13C, and 125Te) spectroscopies. In the crystal structure of the adduct with 2,2'-bipyridine (bipy), the unprecedented μ-κ2N,N':κ2N,N'-bridging coordination mode of bipy was observed. Various intermolecular interactions Te...O, Te...N, and Te...C in adducts were analyzed using density functional theory calculations and quantum theory of atoms in molecules analysis. The estimated strength for appropriate short contacts varies from 0.9 to 5.3 kcal/mol, and they are attractive and purely non-covalent.
Collapse
Affiliation(s)
- Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Elizaveta A Filippova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russian Federation
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Intermolecular (Isocyano group)···PtII interactions involving coordinated isocyanides in cyclometalated PtII complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes (Basel) 2022. [DOI: 10.3390/pr10030530] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proceeding our prior studies of SARS-CoV-2, the inhibitory potential against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) has been investigated for a collection of 3009 clinical and FDA-approved drugs. A multi-phase in silico approach has been employed in this study. Initially, a molecular fingerprint experiment of Remdesivir (RTP), the co-crystallized ligand of the examined protein, revealed the most similar 150 compounds. Among them, 30 compounds were selected after a structure similarity experiment. Subsequently, the most similar 30 compounds were docked against SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2). Aloin 359, Baicalin 456, Cefadroxil 1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286 exhibited the most precise binding modes, as well as the best binding energies. To confirm the obtained results, MD simulations experiments have been conducted for Hyperoside 2109, the natural flavonoid glycoside that exhibited the best docking scores, against RdRp (PDB ID: 7BV2) for 100 ns. The achieved results authenticated the correct binding of 2109, showing low energy and optimum dynamics. Our team presents these outcomes for scientists all over the world to advance in vitro and in vivo examinations against COVID-19 for the promising compounds.
Collapse
|
6
|
Kinzhalov MA, Ivanov DM, Melekhova AA, Bokach NA, Gomila RM, Frontera A, Kukushkin VY. Chameleonic Metal-bound Isocyanides: π-Donating CuI-center Imparts a Nucleophilicity to the Isocyanide Carbon toward Halogen Bonding. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00034b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the structures of the isostructural cocrystals [CuI3(CNXyl)3]·CHX3 (X = Br, I), two adjacent CuI-bound isocyanide groups, whose carbon lone pairs are blocked by the ligation, exhibit nucleophilic properties induced...
Collapse
|
7
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
8
|
Elgengehi SM, El-Taher S, Ibrahim MA, El-Kelany KE. Unexpected favourable noncovalent interaction between chlorine oxyanions (ClO−; x = 1–4) and benzene: Benchmarking DFT and SAPT methods with respect to CCSD(T). COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Jiménez‐Grávalos F, Gallegos M, Martín Pendás Á, Novikov AS. Challenging the electrostatic
σ
‐hole picture of halogen bonding using minimal models and the interacting quantum atoms approach. J Comput Chem 2021; 42:676-687. [DOI: 10.1002/jcc.26488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Gallegos
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | | |
Collapse
|
10
|
Popov RA, Mikherdov AS, Novikov AS, Myznikov LV, Boyarskiy VP. Pd II- and Pt II-mediated coupling of aryl isocyanides with N-heterocyclic thiones. NEW J CHEM 2021. [DOI: 10.1039/d0nj05386d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A PdII- and PtII-mediated reaction of aryl isocyanides with N-heterocyclic thiones results in a previously undescribed type of regioselectivity for ambident nucleophile addition to coordinated isocyanides.
Collapse
Affiliation(s)
- Roman A. Popov
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg 199034
- Russian Federation
| | - Alexander S. Mikherdov
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg 199034
- Russian Federation
| | - Alexander S. Novikov
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg 199034
- Russian Federation
| | - Leonid V. Myznikov
- Saint-Petersburg State Institute of Technology
- Moskovsky ave. 26
- St. Petersburg 190013
- Russian Federation
| | - Vadim P. Boyarskiy
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg 199034
- Russian Federation
| |
Collapse
|
11
|
Abramov PA, Novikov AS, Sokolov MN. Interactions of aromatic rings in the crystal structures of hybrid polyoxometalates and Ru clusters. CrystEngComm 2021. [DOI: 10.1039/d1ce00716e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Computational analysis for π–π interaction energies of {(arene)Ru}2+ containing complexes and relative group 5 hybrid polyoxometalates reveals different frameworks. Some perspectives on πOF materials processing and crystal engineering were discussed.
Collapse
Affiliation(s)
- Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave., 630090, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave., 630090, Russia
| |
Collapse
|
12
|
Abstract
The problem of non-covalent interactions in coordination and organometallic compounds is a hot topic in modern chemistry, material science, crystal engineering and related fields of knowledge. Researchers in various fields of chemistry and other disciplines (physics, crystallography, computer science, etc.) are welcome to submit their works on this topic for our Special Issue “Non-Covalent Interactions in Coordination and Organometallic Chemistry”. The aim of this Special Issue is to highlight and overview modern trends and draw the attention of the scientific community to various types of non-covalent interactions in coordination and organometallic compounds. In this editorial, I would like to briefly highlight the main successes of our research group in the field of the fundamental study of non-covalent interactions in coordination and organometallic compounds over the past 5 years.
Collapse
|
13
|
Mikherdov AS, Novikov AS, Boyarskiy VP, Kukushkin VY. The halogen bond with isocyano carbon reduces isocyanide odor. Nat Commun 2020; 11:2921. [PMID: 32523100 PMCID: PMC7286913 DOI: 10.1038/s41467-020-16748-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Predominantly, carbon atoms of various species function as acceptors of noncovalent interactions when they are part of a π-system. Here, we report on the discovery of a halogen bond involving the isocyano carbon lone pair. The co-crystallization or mechanochemical liquid-assisted grinding of model mesityl isocyanide with four iodoperfluorobenezenes leads to a series of halogen-bonded adducts with isocyanides. The obtained adducts were characterized by single-crystal and powder X-ray diffraction, solid-state IR and 13C NMR spectroscopies, and also by thermogravimetric analysis. The formation of the halogen bond with the isocyano group leads to a strong reduction of the isocyanide odor (3- to 46-fold gas phase concentration decrease). This manipulation makes isocyanides more suitable for laboratory storage and usage while preserving their reactivity, which is found to be similar between the adducts and the parent isocyanide in some common transformations, such as ligation to metal centers and the multi-component Ugi reaction. Carbon atoms of various species typically function as acceptors of noncovalent interactions when they are part of a π-system. Here, the authors report their discovery of a noncovalent halogen bond involving the isocyano carbon lone pair, which results in adducts with strongly reduced isocyanide odor.
Collapse
Affiliation(s)
- Alexander S Mikherdov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| | - Alexander S Novikov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim P Boyarskiy
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| |
Collapse
|
14
|
Kia R. Non-covalent sulfoxide⋯(nitrosyl group) interactions involving coordinated nitrosyl in a Ru( ii) nitrosyl complex with an α-diimine ligand: structural and computational studies. CrystEngComm 2020. [DOI: 10.1039/d0ce01063d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inspection of the X-ray structure of the newly prepared Ru–nitrosyl complex bearing an α-diimine ligand revealed for the first time the π-hole interaction involving the coordinated nitrosyl group with DMSO.
Collapse
Affiliation(s)
- Reza Kia
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| |
Collapse
|