1
|
DeCecco AC, Conrad AR, Floyd AM, Jasper AW, Hansen N, Dagaut P, Moody NE, Popolan-Vaida DM. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. Phys Chem Chem Phys 2024; 26:22319-22336. [PMID: 38980126 DOI: 10.1039/d4cp01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The reaction of unsaturated compounds with ozone (O3) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, i.e. acetaldehyde oxide (CH3CHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.5 with a mixture of 1% crotonaldehyde, 10% O2, at an fixed ozone concentration of 1000 ppm and 89% Ar dilution. Molecular-beam mass spectrometry in conjunction with single photon tunable synchrotron vacuum-ultraviolet (VUV) radiation is used to identify elusive intermediates by means of experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Addition of ozone (1000 ppm) is observed to trigger the oxidation of CA already at 390 K, which is below the temperature where the oxidation reaction of CA was observed in the absence of ozone. The observed CA + O3 product, C4H6O4, is found to be linked to a ketohydroperoxide (2-hydroperoxy-3-oxobutanal) resulting from the isomerization of the primary ozonide. Products corresponding to the CIs uni- and bi-molecular reactions were observed and identified. A network of CI reactions is identified in the temperature region below 600 K, characterized by CIs bimolecular reactions with species like aldehydes, i.e., formaldehyde, acetaldehyde, and crotonaldehyde and alkenes, i.e., ethene and propene. The region below 600 K is also characterized by the formation of important amounts of typical low-temperature oxidation products, such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH), and ethyl hydroperoxide (C2H5OOH). Detection of additional oxygenated species such as alcohols, ketene, and aldehydes are indicative of multiple active oxidation routes. This study provides important information about the initial step involved in the CIs assisted oligomerization reactions in complex reactive environments where CIs with different functionalities are reacting simultaneously. It provides new mechanistic insights into ozone-assisted oxidation reactions of unsaturated aldehydes, which is critical for the development of improved atmospheric and combustion kinetics models.
Collapse
Affiliation(s)
- Alec C DeCecco
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Alan R Conrad
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Arden M Floyd
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Philippe Dagaut
- Centre National de la Recherche Scientifique (CNRS), ICARE, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
| | - Nath-Eddy Moody
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
2
|
Upadhyay M, Töpfer K, Meuwly M. Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide. J Phys Chem Lett 2024; 15:90-96. [PMID: 38147042 DOI: 10.1021/acs.jpclett.3c03131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The decomposition dynamics of vibrationally excited syn-CH3CHOO to form vinoxy + hydroxyl (CH2CHO + OH) radicals or to recombine to form glycolaldehyde (CH2OHCHO) are characterized using statistically significant numbers of molecular dynamics simulations using a full-dimensional neural-network-based potential energy surface at the CASPT2 level of theory. The computed final OH-translational and rotational state distributions agree well with experiments and probe the still unknown O-O bond strength DeOO for which best values from 22 to 25 kcal/mol are found. OH-elimination rates are consistent with experiments and do not vary appreciably with DeOO due to the non-equilibrium nature of the process. In addition to the OH-elimination pathway, OH roaming is observed following O-O scission, which leads to glycolaldehyde formation on the picosecond time scale. Together with recent work involving the methyl-ethyl-substituted Criegee intermediate, we conclude that OH roaming is a general pathway to be included in molecular-level modeling of atmospheric processes. This work demonstrates that atomistic simulations with machine-learned energy functions provide a viable route for exploring the chemistry and reaction dynamics of atmospheric reactions.
Collapse
Affiliation(s)
- Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
3
|
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022; 61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Algorithmic reaction exploration based on transition state searches has already made inroads into many niche applications, but its potential as a general-purpose tool is still largely unrealized. Computational cost and the absence of benchmark problems involving larger molecules remain obstacles to further progress. Here an ultra-low cost exploration algorithm is implemented and used to explore the reactivity of unimolecular and bimolecular reactants, comprising a total of 581 reactions involving 51 distinct reactants. The algorithm discovers all established reaction pathways, where such comparisons are possible, while also revealing a much richer reactivity landscape, including lower barrier reaction pathways and a strong dependence of reaction conformation in the apparent barriers of the reported reactions. The diversity of these benchmarks illustrate that reaction exploration algorithms are approaching general-purpose capability.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| | - Brett M. Savoie
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
4
|
Photoionization energetics and dissociation pathways of hydroperoxyethyl formate produced in the reaction of CH3CHOO + formic acid. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Smith Lewin C, Herbinet O, Battin-Leclerc F, Bourgalais J. Ozone-assisted oxidation of ethylene in a jet-stirred reactor: An experimental and modeling study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Fan H, Ma J, Zhu L, Liu B, Liu F, Shan X, Wang Z, Wang L. Unusual Diradical Intermediates in Ozonolysis of Alkenes: A Combined Theoretical and Synchrotron Radiation Photoionization Mass Spectrometric Study on Ozonolysis of Alkyl Vinyl Ethers. J Phys Chem A 2022; 126:8021-8027. [DOI: 10.1021/acs.jpca.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanlin Fan
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Ma
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Zhu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Xiaobin Shan
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Sciences and Technology of China, Hefei, 230029, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Conrad AR, Hansen N, Jasper AW, Thomason NK, Hidaldo-Rodrigues L, Treshock SP, Popolan-Vaida DM. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of trans-2-butene. Phys Chem Chem Phys 2021; 23:23554-23566. [PMID: 34651147 DOI: 10.1039/d1cp03126k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uni- and bi-molecular reactions involving Criegee intermediates (CIs) have been the focus of many studies due to the role these molecules play in atmospheric chemistry. The reactivity of CIs is known to strongly depend on their structure. The reaction network of the second simplest CI, acetaldehyde oxide (CH3CHOO), is investigated in this work in an atmospheric pressure jet-stirred reactor (JSR) during the ozonolysis of trans-2-butene to explore the kinetic pathways relevant to atmospheric chemistry and low-temperature combustion. The mole fraction profiles of reactants, intermediates, and final products are determined by means of molecular-beam mass spectrometry in conjunction with single-photon ionization employing tunable synchrotron-generated vacuum ultraviolet radiation. A network of CI reactions is identified in the temperature region below 600 K, characterized by CI addition to trans-2-butene, water, formaldehyde, formic acid, and methanol. No sequential additions of the CH3CHOO CI are observed, in contrast with the reactivity of the simplest CI (H2COO) and the earlier observation of an extensive reaction network with up to four H2COO sequential additions (Phys. Chem. Chem. Phys., 2019, 21, 7341-7357). Experimental photoionization efficiency scans recorded at 300 K and 425 K and ab initio threshold energy calculations lead to the identification and quantification of previously elusive intermediates, such as ketohydroperoxide and hydroperoxide species. Specifically, the C4H8 + O3 adduct is identified as a ketohydroperoxide (KHP, 3-hydroperoxybutan-2-one, CH3C(O)CH(CH3)OOH), while hydroxyacetaldehyde (glycolaldehyde, HCOCH2OH) formation is attributed to unimolecular isomerization of the CIs. Other hydroperoxide species such as methyl hydroperoxide (CH3OOH), ethyl hydroperoxide (C2H5OOH), butyl hydroperoxide (OOH), hydroperoxyl acetaldehyde (HOOCH2CHO), hydroxyethyl hydroperoxide (CH3CH(OH)OOH), but-1-enyl-3-hydroperoxide, and 4-hydroxy-3-methylpentan-2-one (HOCH(CH3)CH(CH3)C(O)CH3) are also identified. Detection of additional oxygenated species such as methanol, ethanol, ketene, and aldehydes suggests multiple active oxidation routes. These results provide additional evidence that CIs are key intermediates of the ozone-unsaturated hydrocarbon reactions providing critical inputs for improved kinetics models.
Collapse
Affiliation(s)
- Alan R Conrad
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Natasha K Thomason
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | | - Sean P Treshock
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
8
|
Taatjes CA, Caravan RL, Winiberg FAF, Zuraski K, Au K, Sheps L, Osborn DL, Vereecken L, Percival CJ. Insertion products in the reaction of carbonyl oxide Criegee intermediates with acids: Chloro(hydroperoxy)methane formation from reaction of CH2OO with HCl and DCl. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1975199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Craig A. Taatjes
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA, USA
| | - Rebecca L. Caravan
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA, USA
- NASA Postdoctoral Program Fellow, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Frank A. F. Winiberg
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Kristen Zuraski
- NASA Postdoctoral Program Fellow, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kendrew Au
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA, USA
| | - Leonid Sheps
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA, USA
| | - David L. Osborn
- Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, CA, USA
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Luc Vereecken
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carl J. Percival
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Moberg DR, Jasper AW. Permutationally Invariant Polynomial Expansions with Unrestricted Complexity. J Chem Theory Comput 2021; 17:5440-5455. [PMID: 34469127 DOI: 10.1021/acs.jctc.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general strategy is presented for constructing and validating permutationally invariant polynomial (PIP) expansions for chemical systems of any stoichiometry. Demonstrations are made for three categories of gas-phase dynamics and kinetics: collisional energy-transfer trajectories for predicting pressure-dependent kinetics, three-body collisions for describing transient van der Waals adducts relevant to atmospheric chemistry, and nonthermal reactivity via quasiclassical trajectories. In total, 30 systems are considered with up to 15 atoms and 39 degrees of freedom. Permutational invariance is enforced in PIP expansions with as many as 13 million terms and 13 permutationally distinct atom types by taking advantage of petascale computational resources. The quality of the PIP expansions is demonstrated through the systematic convergence of in-sample and out-of-sample errors with respect to both the number of training data and the order of the expansion, and these errors are shown to predict errors in the dynamics for both reactive and nonreactive applications. The parallelized code distributed as part of this work enables the automation of PIP generation for complex systems with multiple channels and flexible user-defined symmetry constraints and for automatically removing unphysical unconnected terms from the basis set expansions, all of which are required for simulating complex reactive systems.
Collapse
Affiliation(s)
- Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Zhao Q, Savoie BM. Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks. NATURE COMPUTATIONAL SCIENCE 2021; 1:479-490. [PMID: 38217124 DOI: 10.1038/s43588-021-00101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/18/2021] [Indexed: 01/15/2024]
Abstract
Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation, but computational cost and inconsistent reaction coverage are still obstacles to exploring deep reaction networks. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straightforward modifications of the reaction enumeration, geometry initialization and transition state convergence algorithms that are common to many prediction methodologies. These components are implemented in the context of yet another reaction program (YARP), our reaction prediction package with which we report reaction discovery benchmarks for organic single-step reactions, thermal degradation of a γ-ketohydroperoxide, and competing ring-closures in a large organic molecule. Compared with recent benchmarks, YARP (re)discovers both established and unreported reaction pathways and products while simultaneously reducing the cost of reaction characterization by nearly 100-fold and increasing convergence of transition states. This combination of ultra-low cost and high reaction coverage creates opportunities to explore the reactivity of larger systems and more complex reaction networks for applications such as chemical degradation, where computational cost is a bottleneck.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Fang W, Winter P, Richardson JO. Microcanonical Tunneling Rates from Density-of-States Instanton Theory. J Chem Theory Comput 2020; 17:40-55. [PMID: 33351621 DOI: 10.1021/acs.jctc.0c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semiclassical instanton theory is a form of quantum transition-state theory which can be applied to the computation of thermal reaction rates in complex molecular systems including quantum tunneling effects. There have been a number of attempts to extend the theory to treat microcanonical rates. However, the previous formulations are either computationally unfeasible for large systems due to an explicit sum over states or they involve extra approximations, which make them less reliable. We propose a robust and practical microcanonical formulation called density-of-states instanton theory, which avoids the sum over states altogether. In line with the semiclassical approximations inherent to the instanton approach, we employ the stationary-phase approximation to the inverse Laplace transform to obtain the densities of states. This can be evaluated using only post-processing of the data available from a small set of instanton calculations, such that our approach remains computationally efficient. We show that the new formulation predicts results that agree well with quantum scattering theory for an atom-diatom reaction and with experiments for a photoexcited unimolecular hydrogen transfer in a Criegee intermediate. When the thermal rate is evaluated from a Boltzmann average over our new microcanonical formalism, it can overcome some problems of conventional instanton theory. In particular, it predicts a smooth transition at the crossover temperature and is able to describe bimolecular reactions with pre-reactive complexes such as CH3OH + OH.
Collapse
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Pierre Winter
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
12
|
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020; 124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accelerating chemical effect of ozone addition on the oxidation chemistry of methyl hexanoate [CH3(CH2)4C(═O)OCH3] was investigated over a temperature range from 460 to 940 K. Using an externally heated jet-stirred reactor at p = 700 Torr (residence time τ = 1.3 s, stoichiometry φ = 0.5, 80% argon dilution), we explored the relevant chemical pathways by employing molecular-beam mass spectrometry with electron and single-photon ionization to trace the temperature dependencies of key intermediates, including many hydroperoxides. In the absence of ozone, reactivity is observed in the so-called low-temperature chemistry (LTC) regime between 550 and 700 K, which is governed by hydroperoxides formed from sequential O2 addition and isomerization reactions. At temperatures above 700 K, we observed the negative temperature coefficient (NTC) regime, in which the reactivity decreases with increasing temperatures, until near 800 K, where the reactivity increases again. Upon addition of ozone (1000 ppm), the overall reactivity of the system is dramatically changed due to the time scale of ozone decomposition in comparison to fuel oxidation time scales of the mixtures at different temperatures. While the LTC regime seems to be only slightly affected by the addition of ozone with respect to the identity and quantity of the observed intermediates, we observed an increased reactivity in the intermediate NTC temperature range. Furthermore, we observed experimental evidence for an additional oxidation regime in the range near 500 K, herein referred to as the extreme low-temperature chemistry (ELTC) regime. Experimental evidence and theoretical rate constant calculations indicate that this ELTC regime is likely to be initiated by H abstraction from methyl hexanoate via O atoms, which originate from thermal O3 decomposition. The theoretical calculations show that the rate constants for methyl ester initiation via abstraction by O atoms increase dramatically with the size of the methyl ester, suggesting that ELTC is likely not important for the smaller methyl esters. Experimental evidence is provided indicating that, similar to the LTC regime, the chemistry in the ELTC regime is dominated by hydroperoxide chemistry. However, mass spectra recorded at various reactor temperatures and at different photon energies provide experimental evidence of some differences in chemical species between the ELTC and the LTC temperature ranges.
Collapse
Affiliation(s)
- Aric C Rousso
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
13
|
He X, Hansen N, Moshammer K. Molecular-Weight Growth in Ozone-Initiated Low-Temperature Oxidation of Methyl Crotonate. J Phys Chem A 2020; 124:7881-7892. [PMID: 32893634 DOI: 10.1021/acs.jpca.0c05684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report experiments of ozone-initiated low-temperature oxidation of methyl crotonate (MC, CH3-CH═CH-C(O)OCH3) from 420 to 660 K in a near-atmospheric-pressure jet-stirred reactor using photoionization molecular-beam mass spectrometry as a sampling technique. In this temperature regime, no typical low-temperature combustion (LTC) reactions have been observed for MC when oxygen (O2) is used as the oxidizer. Upon ozone addition, significant oxidation of methyl crotonate is found. On the basis of experimentally observed energy-dependent mass peaks in combination with temperature-dependent mole fraction profiles and photoionization efficiency curves, we provide new insights into the methyl crotonate ozonolysis reaction network. The observed MC + O3 products, C5H8O5, are found to be related to the keto-hydroperoxides resulting from the isomerization of the primary ozonide. Evidence is also provided that molecular growth mainly results from cycloaddition reactions of the Criegee intermediate into aldehydes and alkenes as well as addition reactions of the Criegee intermediates to the double bond of methyl crotonate and sequential decomposition into ketones. Furthermore, species that contribute in large amounts to the low-temperature oxidation of methyl crotonate, like H2O2, CH3OOH, CH3OH, and HC(O)OH, are identified, and their mole fractions are reported. Additionally, preliminary modeling is performed which qualitatively captures the observed NTC behavior and reveals future research opportunities.
Collapse
Affiliation(s)
- X He
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
| | - N Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - K Moshammer
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
| |
Collapse
|
14
|
Yang X, Deng J, Li D, Chen J, Xu Y, Zhang K, Shang X, Cao Q. Transient species in the ozonolysis of tetramethylethene. J Environ Sci (China) 2020; 95:210-216. [PMID: 32653182 DOI: 10.1016/j.jes.2020.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The reaction of alkenes with ozone has great effect on atmospheric oxidation, its transient species can produce OH radicals and contribute to the formation of secondary organic aerosols (SOA). In the present study, the reaction of tetramethylethene (TME) with ozone was investigated using self-assembled low temperature matrix isolation system. The TME and ozone were co-deposited on a salt plate at 15 K, and then slowly warmed up the plate. The first transient species primary ozonide (POZ) was detected, indicating that the reaction followed Criegee mechanism. Then POZ began to decompose at 180 K. However, secondary ozonide (SOZ) was not observed according to Criegee mechanism. Probably, Criegee Intermediate (CI) did not react with inert carbonyl of acetone, but with remaining TME formed tetra-methyl epoxide (EPO).
Collapse
Affiliation(s)
- Xiaolu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianguo Deng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianhua Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaona Shang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA
| | - Carl J. Percival
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
16
|
Chow R, Mok DKW. A theoretical study of the addition of CH 2OO to hydroxymethyl hydroperoxide and its implications on SO 3 formation in the atmosphere. Phys Chem Chem Phys 2020; 22:14130-14141. [PMID: 32542295 DOI: 10.1039/d0cp00961j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of hydroxymethyl hydroperoxide (HMHP, HOCH2OOH) with the simplest Criegee intermediate, CH2OO, has been examined using quantum chemical methods with transition state theory. Geometry optimization and IRC calculations were performed using the M06-2X, MN15-L, and B2PLYP-D3 functionals in conjunction with the aug-cc-pVTZ basis set. Single point energy calculations using QCISD(T) and BD(T) with the same basis set have been performed to determine the energy of reactants, reactive complexes, transition states, and products. Rate coefficients have been obtained using variational transition state theory. The addition of CH2OO on the three different oxygen atoms in HMHP has been considered and the ether oxide forming channel, CH2OO + HOCH2OOH → HOCH2O(O)CH2OOH (channel 2), is the most favorable. The best computed standard enthalpy of reaction (ΔH) and zero-point corrected barrier height are -20.02 and -6.33 kcal mol-1, respectively. The reaction barrier is negative and our results suggest that both the inner and outer transition states contribute to the corresponding overall reactive flux in the tropospheric temperature range (220 K to 320 K). A two-transition state model has been used to obtain reliable rate coefficients at the high-pressure limit. The pressure-dependent rate coefficient calculations using the SS-QRRK theory have shown that this channel is pressure-dependent. Moreover, our investigation has shown that the ether oxide formed may rapidly react with SO2 at 298 K to form SO3, which can, in turn, react with water to form atmospheric H2SO4. A similar calculation has been conducted for the reaction of HMHP with OH, suggesting that the titled reaction may be a significant sink of HMHP. Therefore, the reaction between CH2OO and HOCH2OOH could be an indirect source for generating atmospheric H2SO4, which is crucial to the formation of clouds, and it might relieve global warming.
Collapse
Affiliation(s)
- Ronald Chow
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | | |
Collapse
|
17
|
Maranzana A, Tonachini G. Multireference Study of the H 2COO (Criegee Intermediate) + O 3 Addition: A Reaction of Possible Tropospheric Interest. J Phys Chem A 2020; 124:1112-1120. [DOI: 10.1021/acs.jpca.9b11430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Maranzana
- Università di Torino, Dipartimento di Chimica, Corso Massimo D’Azeglio, 48, I-10125 Torino, Italy
| | - Glauco Tonachini
- Università di Torino, Dipartimento di Chimica, Corso Massimo D’Azeglio, 48, I-10125 Torino, Italy
| |
Collapse
|
18
|
Abstract
This contribution presents a comprehensive computational study on the reactions of secondary ozonide (SOZ) with ammonia and water molecules. The mechanisms were studied in both a vacuum and the aqueous medium. All the molecular geometries were optimized using the B3LYP functional in conjunction with several basis sets. M06-2X, APFD, and ωB97XD functionals with the full basis set were also used. In addition, single-point energy calculations were performed with the G4MP2 and G3MP2 methods. Five different mechanistic pathways were studied for the reaction of SOZ with ammonia and water molecules. The most plausible mechanism for the reaction of SOZ with ammonia yields HC(O)OH, NH3, and HCHO as products, with ammonia herein acting as a mediator. This pathway is exothermic and exergonic, with an overall barrier height of only 157 kJ mol−1 using the G3MP2 method. All the reaction pathways between SOZ and water molecules are endothermic and endergonic reactions. The most likely reaction pathway for the reaction of SOZ with water involves a water dimer, in which the second water molecule acts as a mediator, with an overall barrier height of only 135 kJ mol−1 using the G3MP2 method. Solvent effects were found to incur a significant reduction in activation energies. When the second H2O molecule acts as a mediator in the reaction of SOZ with water, the barrier height of the rate-determining step state decreases significantly.
Collapse
|
19
|
Qiu J, Ishizuka S, Tonokura K, Colussi AJ, Enami S. Water Dramatically Accelerates the Decomposition of α-Hydroxyalkyl-Hydroperoxides in Aerosol Particles. J Phys Chem Lett 2019; 10:5748-5755. [PMID: 31498633 PMCID: PMC6778917 DOI: 10.1021/acs.jpclett.9b01953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/09/2019] [Indexed: 05/25/2023]
Abstract
α-Hydroxyalkyl-hydroperoxides (α-HHs), from the addition of water to Criegee intermediates in the ozonolysis of olefins, are reactive components of organic aerosols. Assessing the fate of α-HHs in such media requires information on the rates and products of their reactions in aqueous organic matrixes. This information, however, is unavailable due to the lack of analytical techniques for the detection and identification of labile α-HHs. Here, we report the mass spectrometric detection (as Cl- adducts) of the α-HH produced in the ozonolysis of a C15 diolefin in water (W):acetonitrile (AN) mixtures of variable composition containing inert NaCl. α-HH decays into a gem-diol + H2O2 within τ1/e ≈ 52 min in 50% (v:v) water, but persists longer than a day in ≤10% water mixtures. The strong nonlinear dependence of τ1/e on solvent composition reveals that water content is a major factor controlling the fate of α-HHs in atmospheric particles. It also suggests that α-HH decomposes while embedded in WnANm clusters rather than randomly dissolved in molecularly homogeneous W:AN mixtures.
Collapse
Affiliation(s)
- Junting Qiu
- Graduate
School of Frontier Sciences, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shinnosuke Ishizuka
- National
Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Kenichi Tonokura
- Graduate
School of Frontier Sciences, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan
| | - Agustín J. Colussi
- Ronald
and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Shinichi Enami
- National
Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
20
|
Porterfield JP, Lee KLK, Dell'Isola V, Carroll PB, McCarthy MC. Characterization of the simplest hydroperoxide ester, hydroperoxymethyl formate, a precursor of atmospheric aerosols. Phys Chem Chem Phys 2019; 21:18065-18070. [DOI: 10.1039/c9cp03466h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Atmospheric aerosols are large clusters of molecules and particulate matter that profoundly affect the Earth's radiation budget and climate.
Collapse
Affiliation(s)
| | | | - Valentina Dell'Isola
- Dipartimento di Chimica “Giacomo Ciamician”
- Universita' di Bologna
- 40126 Bologna
- Italy
| | | | | |
Collapse
|