1
|
Kim Y, Han H, Shin HJ. Controlled Cooperativity of Proton Tunneling in a Water Trimer. NANO LETTERS 2025; 25:2411-2417. [PMID: 39899404 DOI: 10.1021/acs.nanolett.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Proton tunneling through a hydrogen bond is a significant quantum phenomenon in proton-mediated processes. Hydrogen bonds strengthen each other through cooperative interactions, enhancing proton tunneling. Controlling cooperativity of the hydrogen-bond network is required to understand the role of cooperativity in proton tunneling; however, engineering hydrogen bonds is difficult due to the stable structure of hydrogen-bonded cluster. Here, we demonstrate that collective proton tunneling can be controlled inside a cyclic water trimer simply by assigning an asymmetry in the adsorption structure. Asymmetric configuration of water trimers in registry with the NaCl(001) surface perturbs the strength of hydrogen bonds, destroying cooperativity. We reveal two pathways that facilitate proton tunneling in the interfacial trimer: vibration-excited and rotation-mediated processes. The vibrationally excited states lead to lowering the tunneling barrier, and the intermolecular rotation increases the cooperativity by modifying the adsorption configuration. Our results highlight the atomic-scale control of hydrogen bonds, which is crucial in proton-involved reactions.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Huijun Han
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyung-Joon Shin
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Institute for Basic Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Vilà A, González M. Quantum dynamics of the Br 2 (B-excited state) photodissociation in superfluid helium nanodroplets: importance of the recombination process. Phys Chem Chem Phys 2022; 24:24353-24361. [PMID: 36178095 DOI: 10.1039/d2cp02984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the Br2 photodissociation dynamics (B ← X electronic transition) of Br2(v = 0, X)@(4He)N doped nanodroplets (T = 0.37 K) at zero angular momentum, with N in the 100-1000 interval. To do this, we have used a quantum mechanical hybrid strategy proposed by us and, as far as we know, this is the second quantum dynamics study available on the photodissociation of molecules in superfluid helium nanodroplets. While the results obtained for some properties are qualitatively similar to those reported previously by us for the Cl2(B ← X) related case (in particular, the oscillating Br final velocity distribution which also arises from quantum interferences), large differences are evident in three key properties: the photodissociation mechanism and probability and the time scale of the process. This can be interpreted on the basis of the significantly lower excitation energy achieved by the Br2(B ← X) transition and the higher reduced mass of Br-Br in comparison to the chlorine case. The Br2(B) photodissociation dynamics is significantly more complex than that of Cl2(B) and leads to the fragmentation of the initial wave packet. Thus, the probability of non-dissociation is equal to 17, 18, 51, 85 and 100% for N = 100, 200, 300, 500 and 1000, respectively, while for chlorine this probability is equal to zero. In spite of the very large experimental difficulties that exist for obtaining nanodroplets with a well defined size, we hope that these results will encourage experimentalists to investigate these interesting systems.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Qiang J, Zhou L, Lu P, Lin K, Ma Y, Pan S, Lu C, Jiang W, Sun F, Zhang W, Li H, Gong X, Averbukh IS, Prior Y, Schouder CA, Stapelfeldt H, Cherepanov IN, Lemeshko M, Jäger W, Wu J. Femtosecond Rotational Dynamics of D_{2} Molecules in Superfluid Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2022; 128:243201. [PMID: 35776471 DOI: 10.1103/physrevlett.128.243201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.
Collapse
Affiliation(s)
- Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yongzhe Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Fenghao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiam Prior
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Igor N Cherepanov
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
4
|
Briant M, Mestdagh JM, Gaveau MA, Poisson L. Reaction dynamics within a cluster environment. Phys Chem Chem Phys 2022; 24:9807-9835. [PMID: 35441619 DOI: 10.1039/d1cp05783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective article reviews experimental and theoretical works where rare gas clusters and helium nanodroplets are used as a nanoreactor to investigate chemical dynamics in a solvent environment. A historical perspective is presented first followed by specific considerations on the mobility of reactants within these reaction media. The dynamical response of pure clusters and nanodroplets to photoexcitation is shortly reviewed before examining the role of the cluster (or nanodroplet) degrees of freedom in the photodynamics of the guest atoms and molecules.
Collapse
Affiliation(s)
- Marc Briant
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Marc-André Gaveau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | - Lionel Poisson
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| |
Collapse
|
5
|
Blancafort-Jorquera M, González M. Vibrational energy relaxation of a diatomic molecule in a superfluid helium nanodroplet: influence of the nanodroplet size, interaction energy and energy gap. Phys Chem Chem Phys 2021; 23:25961-25973. [PMID: 34783338 DOI: 10.1039/d1cp03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the nanodroplet size, molecule-helium interaction potential energy and ν = 1 - ν = 0 vibrational energy gap on the vibrational energy relaxation (VER) of a diatomic molecule (X2) in a superfluid helium nanodroplet [HeND or (4He)N; finite quantum solvent at T = 0.37 K] has been studied using a hybrid quantum approach recently proposed by us and taking as a reference the VER results on the I2@(4He)100 doped nanodroplet (Vilà et al., Phys. Chem. Chem. Phys., 2018, 20, 118, which corresponds to the first theoretical study on the VER of molecules embedded in a HeND). This has allowed us to obtain a deeper insight into the vibrational relaxation dynamics. The nanodroplet size has a very small effect on the VER, as this process mainly depends on the interaction between the molecule and the nanodroplet first solvation shell. Regarding the interaction potential energy and the energy gap, both factors play an important and comparable role in the VER time properties (global relaxation time, lifetime and transition time). As the former becomes stronger the relaxation time properties decrease in a significant way (their inverse follows a linear dependence with respect to the ν = 1 - ν = 0 coupling term) and they also decrease in a significant manner when the energy gap diminishes (linear dependence on the ν = 1 - ν = 0 energy difference). We expect that this study will motivate further work on the vibrational relaxation process in HeNDs.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B, Cherepanov IN, Bighin G, Zillich RE, Lemeshko M, Stapelfeldt H. Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains. PHYSICAL REVIEW LETTERS 2020; 125:013001. [PMID: 32678640 DOI: 10.1103/physrevlett.125.013001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 05/20/2023]
Abstract
Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.
Collapse
Affiliation(s)
- Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Anders V Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Benjamin Shepperson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Igor N Cherepanov
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giacomo Bighin
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert E Zillich
- Institute for Theoretical Physics, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Blancafort-Jorquera M, Vilà A, González M. Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne 2 dimer and Ne-Ne adduct formation reaction Ne + Ne-doped nanodroplet. Phys Chem Chem Phys 2019; 21:24218-24231. [PMID: 31661098 DOI: 10.1039/c9cp04561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the Ne2 dimer and Ne-Ne adduct formation in a superfluid helium nanodroplet [(4He)N; T = 0.37 K], Ne + Ne@(4He)N→ Ne2@(4He)N'/Ne-Ne@(4He)N' + (N-N')4He with N = 500, has been investigated using a hybrid approach (quantum and classical mechanics (QM-CM) descriptions for helium and the Ne atoms, respectively) and taking into account the angular momentum of the attacking Ne atom, Ne(1). Comparison with zero angular momentum QM results of our own shows that the present results are similar to the quantum ones for the initial Ne(1) velocities (v0) of 500 and 800 m s-1 (the former one being the most probable velocity of Ne at 300 K), in all cases leading to the Ne2 dimer (re = 3.09 Å). However, significant differences appear below v0 = 500 m s-1, because in the QM-CM dynamics, instead of the dimer, a Ne-Ne adduct is formed (r0 = 5.45 Å). The formation of this adduct will probably dominate as the contribution to reactivity of angular momenta larger than zero is the leading one and angular momentum strongly acts against the Ne2 production. Angular momentum adds further difficulties in producing the dimer, since it makes it more difficult to remove the helium density between both Ne atoms to lead, subsequently, to the Ne2 molecule. Hence, the formation of the neon-neon adduct, Ne-Ne@(4He)N', clearly dominates the reactivity of the system, which results in the formation of a "quantum gel"/"quantum foam", because the two Ne atoms essentially maintain their identity inside the nanodroplet. Large enough Ne(1) initial angular momentum values can induce the formation of vortex lines by the collapse of superficial excitations (ripplons), but they occur with greater difficulty than in the case of the capture of the Ne atom by a non doped helium nanodroplet, due to the wave interferences induced by the Ne induced by the solvation layers of the Ne atom originally placed inside the nanodroplet. We hope that this work will encourage other researchers to investigate the reaction dynamics in helium nanodroplets, an interesting topic on which there are few studies available.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | |
Collapse
|