1
|
Reich M, Colla T, Likos CN. Structural transitions of ionic microgel solutions driven by circularly polarized electric fields. SOFT MATTER 2025; 21:1516-1528. [PMID: 39879073 DOI: 10.1039/d4sm01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla et al., ACS Nano, 2018, 12, 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions via a static, time averaged polarizing charge at the particle surface. In such a coarse-graining framework, the induced dipole interactions are controlled by external parameters such as the field strength and frequency, ionic strength, as well as microgel charge and concentration, thus providing a convenient route to induce different self-assembly scenarios through experimentally adjustable quantities. In contrast to the case of linearly polarized fields, dipole interactions in the case of CP light are purely repulsive in the direction perpendicular to the polarization plane, while featuring an in-plane attractive well. As a result, the CP field induces layering of planar sheets arranged perpendicularly to the field direction, in strong contrast to the chain formation observed in the case of linear polarizations. Depending on the field strength and particle concentration, in-plane crystallization can also take place. Combining molecular dynamics (MD) simulations and the liquid-state hypernetted-chain (HNC) formalism, we herein investigate the emergence of layering formation and in-plane crystal ordering as the dipole strength and microgel concentration are changed over a wide region of parameter space.
Collapse
Affiliation(s)
- Markus Reich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
2
|
Lin Z, Lu Y, Wei X, Huang B, Xu C. Constructing guar hydroxypropyltrimonium chloride continuous segregated network structure for preparation of biobased conductive film. Int J Biol Macromol 2024; 283:137907. [PMID: 39571861 DOI: 10.1016/j.ijbiomac.2024.137907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Stretchable bioelectronics advancements have placed higher demands on conductive elastic film. However, the high conductivity of elastomers largely relies on the substantial content of costly conductive fillers while being environmentally unfriendly. Herein, in order to achieve a win-win situation for the economy and the environment, guar hydroxypropyltrimonium chloride (CGG) was introduced in epoxy natural rubber (ENR) to prepare biobased conductive film. During film-forming, CGG is selectively fixed around the latex particles, thereby forming a continuous segregated network. This structure can be transformed into nanofluidic channels upon hygroscopic, resulting in low volume resistance of 211 Ω·cm (≈280 times decrease). Simultaneously, the toughness of the film is increased to 10.8 MJ/m3 (≈20 times increase) due to the "reinforced concrete structure" effect of the network of CGG. Notably, the presence of segregated network also improved the response to strain (gauge factor of 19.1) and humidity (relative resistance change of 95.9 %). Therefore, the material can be used as wearable flexible sensors. This study not only reveals the formation process of segregated structures in detail but also has significantly advanced our comprehension of biosourced conductive film.
Collapse
Affiliation(s)
- Zihao Lin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yongheng Lu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Xinyu Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Bai Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| | - Chuanhui Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
3
|
Wang G, Ma F, Zhu L, Zhu P, Tang L, Hu H, Liu L, Li S, Zeng Z, Wang L, Xue Q. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311489. [PMID: 38696759 DOI: 10.1002/adma.202311489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Slippery surfaces, which originate in nature with special wettability, have attracted considerable attention in both fundamental research and practical applications in a variety of fields due to their unique characteristics of superlow liquid friction and adhesion. Although research on bioinspired slippery surfaces is still in its infancy, it is a rapidly growing and enormously promising field. Herein, a systematic review of recent progress in bioinspired slippery surfaces, beginning with a brief introduction of several typical creatures with slippery property in nature, is presented. Subsequently,this review gives a detailed discussion on the basic concepts of the wetting, friction, and drag from micro- and macro-aspects and focuses on the underlying slippery mechanism. Next, the state-of-the-art developments in three categories of slippery surfaces of air-trapped, liquid-infused, and liquid-like slippery surfaces, including materials, design principles, and preparation methods, are summarized and the emerging applications are highlighted. Finally, the current challenges and future prospects of various slippery surfaces are addressed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lijing Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ping Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lei Tang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hongyi Hu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Luqi Liu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuangyang Li
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Liping Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qunji Xue
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
4
|
Rudolf M, Zumbusch A. Temporal Evolution of Interparticle Potentials of PMMA Colloids in CHB/Decalin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16085-16092. [PMID: 39054667 PMCID: PMC11308771 DOI: 10.1021/acs.langmuir.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Colloidal dispersions composed of polymethylmetacrylate particles dispersed in a mixture of cyclohexyl bromide and decalin find widespread use as model systems in optical microscopy experiments. While the system allows simultaneous density and refractive index matching, preparing particles with hard potentials remains challenging, and strong variations in the physical parameters of samples prepared in the same manner are commonly observed. Here, we present data on the measurement of forces between individual pairs of particles in highly diluted dispersions over the course of tens of days using the blinking optical tweezers method. Our results show that the variations in the particle properties are indeed caused by a temporal evolution of the particles' charging. Additional measurements of the influence of the addition of tetrabutylammonium bromide (TBAB) to the dispersions show that already small concentrations of added TBAB salt drastically decrease the electrostatic forces between colloidal particles. However, small, non-negligible contact potentials remain even at the highest TBAB concentrations added.
Collapse
Affiliation(s)
- Marcel Rudolf
- Department of Chemistry, Universität Konstanz, D-78457 Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, Universität Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
5
|
Okutan H, Hul G, Stoll S, Le Coustumer P. Retention and Transport of Nanoplastics with Different Surface Functionalities in a Sand Filtration System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:32. [PMID: 38202487 PMCID: PMC11326042 DOI: 10.3390/nano14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent. The retention efficiencies of NPLs were ranked as functionalized with amidine [A-PS]+ > with sulfate [S-PS]- > with surfactant-coated amidine [SDS-A-PS]-. The reversibility of the adsorption process was revealed by introducing surfactant into the sand filter system containing adsorbed [A-PS]+ at three different initial state concentration conditions. The deposition behavior on sand grain showed that positively charged NPLs were attached to the quartz surface, and negatively charged NPLs were attached to the edge of the clay minerals, which can be caused by electrical heterogeneities. The homoaggregates made of positively charged NPLs were more compact than those made of negatively charged NPLs and surfactant-coated NPLs. An anti-correlation was revealed, suggesting a connection between the fractal dimension (Df) of NPL aggregates and retention efficiencies. Increased Df values are associated with decreased retention efficiencies.The findings underscore the crucial influence of NPL surface properties in terms of retention efficiency and reversible adsorption in the presence of surfactants in sand filtration systems.
Collapse
Affiliation(s)
- Hande Okutan
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
- Department of Geological Engineering, Mugla Sitki Kocman University, Mugla 48000, Türkiye
| | - Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Philippe Le Coustumer
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Earth Sciences Department, Université de Bordeaux, 33615 Pessac, France
- Bordeaux Imaging Center, Université de Bordeaux, CNRS-UAR3420-INSERM US4, 33000 Bordeaux, France
| |
Collapse
|
6
|
Machrafi H. Surface tension of nanoparticle dispersions unravelled by size-dependent non-occupied sites free energy versus adsorption kinetics. NPJ Microgravity 2022; 8:47. [PMID: 36323719 PMCID: PMC9630414 DOI: 10.1038/s41526-022-00234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The surface tension of dispersions presents many types of behaviours. Although some models, based on classical surface thermodynamics, allow partial interpretation, fundamental understanding is still lacking. This work develops a single analytical physics-based formulation experimentally validated for the surface tension of various pure nanoparticle dispersions, explaining the underlying mechanisms. Against common belief, surface tension increase of dispersions appears not to occur at low but rather at intermediate surface coverage, owed by the relatively large size of nanoparticles with respect to the fluid molecules. Surprisingly, the closed-form model shows that the main responsible mechanism for the various surface tension behaviours is not the surface chemical potential of adsorbed nanoparticles, but rather that of non-occupied sites, triggered and delicately controlled by the nanoparticles ‘at a distance’, introducing the concept of the ‘non-occupancy’ effect. The model finally invites reconsidering surface thermodynamics of dispersions and provides for criteria that allow in a succinct manner to quantitatively classify the various surface tension behaviours.
Collapse
Affiliation(s)
- Hatim Machrafi
- grid.4861.b0000 0001 0805 7253Université de Liège, Institut de Physique, Liège, 4000 Belgium ,grid.4989.c0000 0001 2348 0746Université libre de Bruxelles, Physical Chemistry Group, Bruxelles, 1050 Belgium ,grid.462844.80000 0001 2308 1657Sorbonne Université, UFR Physique, Paris, 75005 France
| |
Collapse
|
7
|
Khan MA, Sprockel AJ, Macmillan KA, Alting MT, Kharal SP, Boakye-Ansah S, Haase MF. Nanostructured, Fluid-Bicontinuous Gels for Continuous-Flow Liquid-Liquid Extraction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109547. [PMID: 35305279 DOI: 10.1002/adma.202109547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold. Current restrictions for their use are the large fluid-channel sizes (>5 µm), limiting the fluid-fluid interaction surface-area, and the inability to flow liquids through the channels. In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m2 cm-3 is introduced. Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels via electroosmosis. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid-liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes.
Collapse
Affiliation(s)
- Mohd A Khan
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Alessio J Sprockel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Katherine A Macmillan
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Meyer T Alting
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Shankar P Kharal
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | | | - Martin F Haase
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|
8
|
Kamble S, Agrawal S, Cherumukkil S, Sharma V, Jasra RV, Munshi P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022. [DOI: 10.1002/slct.202103084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shashikant Kamble
- Shashikant Kamble Reliance Research and Development Centre Reliance Corporate Park, Reliance Industries Limited Thane Belapur Road, Ghansoli Navi Mumbai 400701 India
| | - Santosh Agrawal
- Research Centre, Vadodara Manufacturing Division Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Sandeep Cherumukkil
- Research Centre, Vadodara Manufacturing Division Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Vipul Sharma
- Research Centre, Vadodara Manufacturing Division Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Raksh Vir Jasra
- Research Centre, Vadodara Manufacturing Division Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Pradip Munshi
- Research Centre, Vadodara Manufacturing Division Reliance Industries Limited Vadodara Gujarat 391346 India
| |
Collapse
|
9
|
Shaparenko NO, Demidova MG, Bulavchenko AI. Electrophoretic mobility and stability of SiO 2 nanoparticles in the solutions of AOT in n-hexadecane-chloroform mixtures. Electrophoresis 2021; 42:1648-1654. [PMID: 34213016 DOI: 10.1002/elps.202100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
Electrophoretic mobility of SiO2 nanoparticles in a n-hexadecane-chloroform mixture depending on AOT concentration and chloroform content was determined. It was shown that an increase in chloroform content and a decrease in AOT concentration cause a growth in electrophoretic mobility. The use of the values of Debye lengths (characteristic thickness) of the diffuse part of the electric double layer (EDL) that were determined previously allowed us to calculate the electrokinetic potential and to evaluate the stability of organosols. The obtained data were in good correlation with the dynamics of temporal changes of hydrodynamic radius and the intensity of light scattering. Organosols may be used for heteroaggregation (sorption) of Au and Ag nanoparticles on SiO2 .
Collapse
Affiliation(s)
| | - Marina G Demidova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
10
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Shafiq MD, Waggett F, Ismail NLM, Bartlett P. Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020; 28:468-486. [PMID: 31984810 DOI: 10.1080/1061186x.2020.1722137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines due to its unique features such as large surface to mass ratio, targeting potential, ability to adsorbed and carry other compound which makes them suitable for biomedical applications. However, the problem of the large-scale synthesis of nanoparticles remains challenging due to physical instability associated with nanoparticles which lead to generation of aggregates particles with high polydispersity index (PDI) indicating low particle homogeneity and eventually loss of their special nanoscale properties. The stabilisation concept can be generated by repulsive electrostatic force, which nanoparticles experience, when they are surrounded by a double layer of electric charges. Selection of proper stabiliser will govern the stability of NPs and ultimately development of optimised drug delivery system. This review summarises mechanism of physical instability issues likely to be encountered during the development of nanoformulations. It also discusses potential stabilising agents used so far and their mechanism in achieving stable nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Waad Aloufi
- Pharmaceutics, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Shehla Najib
- Pharmacognosy and Phytochemistry, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|