1
|
Hutchison CM, Perrett S, van Thor JJ. XFEL Beamline Optical Instrumentation for Ultrafast Science. J Phys Chem B 2024; 128:8855-8868. [PMID: 39087627 PMCID: PMC11421085 DOI: 10.1021/acs.jpcb.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Free electron lasers operating in the soft and hard X-ray regime provide capabilities for ultrafast science in many areas, including X-ray spectroscopy, diffractive imaging, solution and material scattering, and X-ray crystallography. Ultrafast time-resolved applications in the picosecond, femtosecond, and attosecond regimes are often possible using single-shot experimental configurations. Aside from X-ray pump and X-ray probe measurements, all other types of ultrafast experiments require the synchronized operation of pulsed laser excitation for resonant or nonresonant pumping. This Perspective focuses on the opportunities for the optical control of structural dynamics by applying techniques from nonlinear spectroscopy to ultrafast X-ray experiments. This typically requires the synthesis of two or more optical pulses with full control of pulse and interpulse parameters. To this end, full characterization of the femtosecond optical pulses is also highly desirable. It has recently been shown that two-color and two-pulse femtosecond excitation of fluorescent protein crystals allowed a Tannor-Rice coherent control experiment, performed under characterized conditions. Pulse shaping and the ability to synthesize multicolor and multipulse conditions are highly desirable and would enable XFEL facilities to offer capabilities for structural dynamics. This Perspective will give a summary of examples of the types of experiments that could be achieved, and it will additionally summarize the laser, pulse shaping, and characterization that would be recommended as standard equipment for time-resolved XFEL beamlines, with an emphasis on ultrafast time-resolved serial femtosecond crystallography.
Collapse
Affiliation(s)
- Christopher
D. M. Hutchison
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Samuel Perrett
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
2
|
Antolini C, Sosa Alfaro V, Reinhard M, Chatterjee G, Ribson R, Sokaras D, Gee L, Sato T, Kramer PL, Raj SL, Hayes B, Schleissner P, Garcia-Esparza AT, Lim J, Babicz JT, Follmer AH, Nelson S, Chollet M, Alonso-Mori R, van Driel TB. The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source. Molecules 2024; 29:2323. [PMID: 38792184 PMCID: PMC11124266 DOI: 10.3390/molecules29102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump-probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE.
Collapse
Affiliation(s)
- Cali Antolini
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Victor Sosa Alfaro
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Marco Reinhard
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Gourab Chatterjee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Ryan Ribson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Leland Gee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Takahiro Sato
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Patrick L. Kramer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Sumana Laxmi Raj
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Brandon Hayes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Pamela Schleissner
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Angel T. Garcia-Esparza
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Jinkyu Lim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeffrey T. Babicz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA;
| | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Matthieu Chollet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| | - Tim B. van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; (C.A.); (V.S.A.); (M.R.); (G.C.); (R.R.); (D.S.); (L.G.); (T.S.); (P.L.K.); (S.L.R.); (B.H.); (P.S.); (A.T.G.-E.); (J.L.); (J.T.B.J.); (S.N.); (M.C.)
| |
Collapse
|
3
|
Lima FA, Otte F, Vakili M, Ardana-Lamas F, Biednov M, Dall’Antonia F, Frankenberger P, Gawelda W, Gelisio L, Han H, Huang X, Jiang Y, Kloos M, Kluyver T, Knoll M, Kubicek K, Bermudez Macias IJ, Schulz J, Turkot O, Uemura Y, Valerio J, Wang H, Yousef H, Zalden P, Khakhulin D, Bressler C, Milne C. Experimental capabilities for liquid jet samples at sub-MHz rates at the FXE Instrument at European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1168-1182. [PMID: 37860937 PMCID: PMC10624029 DOI: 10.1107/s1600577523008159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.
Collapse
Affiliation(s)
- F. A. Lima
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - F. Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Fakultät für Physik, Technical University Dortmund, Dortmund, Germany
| | - M. Vakili
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - M. Biednov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - W. Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - L. Gelisio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - X. Huang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T. Kluyver
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Knoll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Kubicek
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - J. Schulz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - O. Turkot
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Uemura
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | - C. Milne
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
4
|
Harmand M, Cammarata M, Chollet M, Krygier AG, Lemke HT, Zhu D. Single-shot X-ray absorption spectroscopy at X-ray free electron lasers. Sci Rep 2023; 13:18203. [PMID: 37875533 PMCID: PMC10598033 DOI: 10.1038/s41598-023-44196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.
Collapse
Affiliation(s)
- Marion Harmand
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005, Paris, France.
| | - Marco Cammarata
- Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes 1, 35042, Rennes, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Matthieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Andrew G Krygier
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005, Paris, France
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- SwissFEL, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
5
|
Bogacz I, Makita H, Simon PS, Zhang M, Doyle MD, Chatterjee R, Fransson T, Weninger C, Fuller F, Gee L, Sato T, Seaberg M, Alonso-Mori R, Bergmann U, Yachandra VK, Kern J, Yano J. Room temperature X-ray absorption spectroscopy of metalloenzymes with drop-on-demand sample delivery at XFELs. PURE APPL CHEM 2023; 95:891-897. [PMID: 38013689 PMCID: PMC10505480 DOI: 10.1515/pac-2023-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.
Collapse
Affiliation(s)
- Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Thomas Fransson
- Department of Theoretical chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Leland Gee
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Takahiro Sato
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Matthew Seaberg
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | | | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| |
Collapse
|
6
|
Sension RJ, Chung T, Dewan P, McClain TP, Lamb RM, Penner-Hahn JE. Time-resolved spectroscopy: Advances in understanding the electronic structure and dynamics of cobalamins. Methods Enzymol 2022; 669:303-331. [DOI: 10.1016/bs.mie.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
8
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
9
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
10
|
Choi J, Ahn M, Lee JH, Ahn DS, Ki H, Oh I, Ahn CW, Choi EH, Lee Y, Lee S, Kim J, Cho DW, Wee KR, Ihee H. Ultrafast excited state relaxation dynamics in a heteroleptic Ir( iii) complex, fac-Ir(ppy) 2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01510e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental and calculation results demonstrate that the 3MLppzCT state generated by the spin-forbidden transition rapidly relaxes to 3MLppyCT through internal conversion process with a time constant of ∼450 fs.
Collapse
|
11
|
|
12
|
Naumova MA, Kalinko A, Wong JWL, Alvarez Gutierrez S, Meng J, Liang M, Abdellah M, Geng H, Lin W, Kubicek K, Biednov M, Lima F, Galler A, Zalden P, Checchia S, Mante PA, Zimara J, Schwarzer D, Demeshko S, Murzin V, Gosztola D, Jarenmark M, Zhang J, Bauer M, Lawson Daku ML, Khakhulin D, Gawelda W, Bressler C, Meyer F, Zheng K, Canton SE. Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum. J Chem Phys 2020; 152:214301. [PMID: 32505143 DOI: 10.1063/1.5138641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.
Collapse
Affiliation(s)
- Maria A Naumova
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Aleksandr Kalinko
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Joanne W L Wong
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sol Alvarez Gutierrez
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jie Meng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mingli Liang
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mohamed Abdellah
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Huifang Geng
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| | - Weihua Lin
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | | | | | | | | | - Peter Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Jennifer Zimara
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Vadim Murzin
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - David Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | - Jianxin Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Max Latevi Lawson Daku
- Département de Chimie Physique, Université de Genève, Quai E. Ansermet 30, CH-1211 Genève 4, Switzerland
| | | | | | | | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany
| | - Kaibo Zheng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sophie E Canton
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
13
|
Jiang Y, Liu LC, Sarracini A, Krawczyk KM, Wentzell JS, Lu C, Field RL, Matar SF, Gawelda W, Müller-Werkmeister HM, Miller RJD. Direct observation of nuclear reorganization driven by ultrafast spin transitions. Nat Commun 2020; 11:1530. [PMID: 32251278 PMCID: PMC7090058 DOI: 10.1038/s41467-020-15187-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization. Electron spin is a fundamental property of molecules, and changes in spin state affect both molecular structure and dynamics. Here, the authors resolve, by ultrafast electron diffraction, the nuclear reorganization stabilizing spin transitions in a [FeII(bpy)3](PF6)2 crystal.
Collapse
Affiliation(s)
- Yifeng Jiang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.,Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Kamil M Krawczyk
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Jordan S Wentzell
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Cheng Lu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Ryan L Field
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Samir F Matar
- Lebanese German University, LGU, Sahel-Alma, P.O. Box 206, Jounieh, Lebanon
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | | | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
14
|
Naumova MA, Kalinko A, Wong JWL, Abdellah M, Geng H, Domenichini E, Meng J, Gutierrez SA, Mante PA, Lin W, Zalden P, Galler A, Lima F, Kubicek K, Biednov M, Britz A, Checchia S, Kabanova V, Wulff M, Zimara J, Schwarzer D, Demeshko S, Murzin V, Gosztola D, Jarenmark M, Zhang J, Bauer M, Lawson Daku ML, Gawelda W, Khakhulin D, Bressler C, Meyer F, Zheng K, Canton SE. Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies. J Phys Chem Lett 2020; 11:2133-2141. [PMID: 32069410 DOI: 10.1021/acs.jpclett.9b03883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d4-d7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interest. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrays have not yet been elucidated due to the expected complications associated with the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond time scale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and long-lived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
Collapse
Affiliation(s)
- Maria A Naumova
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Aleksandr Kalinko
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Joanne W L Wong
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Mohamed Abdellah
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Huifang Geng
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| | | | - Jie Meng
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sol Alvarez Gutierrez
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Pierre-Adrien Mante
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Weihua Lin
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
| | - Peter Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | | | | | - Victoria Kabanova
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble Cedex 9, France
| | - Michael Wulff
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble Cedex 9, France
| | - Jennifer Zimara
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Vadim Murzin
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - David Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | - Jianxin Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, D-33098 Paderborn, Germany
| | - Max Latevi Lawson Daku
- Département de Chimie Physique, Université de Genève, Quai E. Ansermet 30, CH-1211 Genève 4, Switzerland
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | | | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Kaibo Zheng
- Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund, Sweden
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Sophie E Canton
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary
| |
Collapse
|
15
|
Ultrafast X-ray Photochemistry at European XFEL: Capabilities of the Femtosecond X-ray Experiments (FXE) Instrument. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Time-resolved X-ray methods are widely used for monitoring transient intermediates over the course of photochemical reactions. Ultrafast X-ray absorption and emission spectroscopies as well as elastic X-ray scattering deliver detailed electronic and structural information on chemical dynamics in the solution phase. In this work, we describe the opportunities at the Femtosecond X-ray Experiments (FXE) instrument of European XFEL. Guided by the idea of combining spectroscopic and scattering techniques in one experiment, the FXE instrument has completed the initial commissioning phase for most of its components and performed first successful experiments within the baseline capabilities. This is demonstrated by its currently 115 fs (FWHM) temporal resolution to acquire ultrafast X-ray emission spectra by simultaneously recording iron Kα and Kβ lines, next to wide angle X-ray scattering patterns on a photoexcited aqueous solution of [Fe(bpy)3]2+, a transition metal model compound.
Collapse
|
16
|
Miller NA, Michocki LB, Konar A, Alonso-Mori R, Deb A, Glownia JM, Sofferman DL, Song S, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B 12. J Phys Chem B 2020; 124:199-209. [PMID: 31850761 DOI: 10.1021/acs.jpcb.9b09286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Arkaprabha Konar
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Danielle L Sofferman
- Program in Applied Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|