1
|
Wang J, Zhuang L, Gao E, Zhang H, Wan J, Huang C. Dissociation of HBr in Water Clusters Based on a Hybrid Density Functional Approach. J Phys Chem A 2024; 128:7364-7374. [PMID: 39118485 DOI: 10.1021/acs.jpca.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The dissociation of acidic molecules within a microscopic water environment is crucial for understanding intermolecular interactions such as hydrogen bonding. This study explores the optimal configurations of HBr(H2O)n=1-7 using hybrid density functional theory. According to the different mixed cluster structures, the corresponding HBr bond lengths, single-point energies, and introduced proton-transfer parameters are computed and analyzed. The findings indicate that a minimum of three water molecules is necessary for the dissociation of HBr. Subsequently, this conclusion is reinforced through the decomposition of energy components between the acid molecule and water clusters, calculation of hydrogen bonding energies, and analysis of vibrational infrared spectroscopy.
Collapse
Affiliation(s)
- Jing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Lei Zhuang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Enze Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Heng Zhang
- School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianguo Wan
- School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chuanfu Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Liu J, Zhao Y, Lian X, Li D, Zhang X, Chen J, Deng B, Lan X, Shao Y. Unveiling the Influence of Water Molecules for NF 3 Removal by the Reaction of NF 3 with OH: A DFT Study. Molecules 2024; 29:4033. [PMID: 39274881 PMCID: PMC11396519 DOI: 10.3390/molecules29174033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The removal of nitrogen trifluoride (NF3) is of significant importance in atmospheric chemistry, as NF3 is an important anthropogenic greenhouse gas. However, the radical species OH and O(1D) in atmospheric conditions are nonreactive towards NF3. It is necessary to explore possible ways to remove NF3 in atmosphere. Therefore, the participation of water molecules in the reaction of NF3 with OH was discussed, as water is abundant in the atmosphere and can form very stable complexes due to its ability to act as both a hydrogen bond donor and acceptor. Systemic DFT calculations carried out at the CBS-QB3 and ωB97XD/aug-cc-pVTZ level of theory suggest that water molecules could affect the NF3 + OH reaction as well. The energy barrier of the SN2 mechanism was decreased by 8.52 kcal/mol and 10.58 kcal/mol with the assistance of H2O and (H2O)2, respectively. Moreover, the presence of (H2O)2 not only reduced the energy barrier of the reaction, but also changed the product channels, i.e., formation of NF2O + (H2O)2-HF instead of NF2OH + (H2O)2-F. Therefore, the removal of NF3 by reaction with OH is possible in the presence of water molecules. The results presented in this study should provide useful information on the atmospheric chemistry of NF3.
Collapse
Affiliation(s)
- Jiaxin Liu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Yong Zhao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xueqi Lian
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Dongdong Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xueling Zhang
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Jun Chen
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Bin Deng
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xiaobing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youxiang Shao
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| |
Collapse
|
3
|
Chen W, Yang Q, Qu Z, Ma J, Ren H, Li X. Importance of Spin Channels from Radical-Radical Reactions in Hydrogen-Oxygen Combustion Mechanisms at High Temperatures. J Phys Chem A 2024; 128:5188-5201. [PMID: 38888890 DOI: 10.1021/acs.jpca.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Radical-radical reactions can generate two channels with high and low spins. In this work, ten radical-radical reactions with different spin channels and four radical-molecule reactions in hydrogen-oxygen combustion were systematically investigated from a theoretical perspective. The potential energy surface (PES) of radical-radical reactions reveals that the high- and low-spin states of the reactant are energetically degenerate and the two channels are energetically feasible. The difference in rate constants between the high- and low-spin channels gradually decreases as the temperature increases. Then, the kinetic parameters of the 14 bimolecular reactions in the hydrogen-oxygen mechanism of the University of California, San Diego (UCSD), were replaced to simulate the ignition delay time and laminar flame speed. The simulation results agree well with the available experimental findings, indicating the necessity of considering both high- and low-spin channels for kinetic simulation.
Collapse
Affiliation(s)
- Wenlan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zexing Qu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Jianyi Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Haisheng Ren
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xiangyuan Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Combustion and Cooling for Aerospace Power, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Li J, Wang L, Wang L. Computational Study on the Reaction of β-Hydroxyethylperoxy Radical with HO 2 and Effects of Water Vapor. J Phys Chem A 2022; 126:2234-2243. [PMID: 35362984 DOI: 10.1021/acs.jpca.1c09009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of β-hydroxyethylperoxy radical (β-HEP) and HO2 with and without water was studied using quantum chemistry and kinetic calculations. The main products are HOCH2CH2OOH and 3O2 for the reaction with and without water, while all other reaction channels can be neglected. The rate coefficients of the reaction follow negative temperature dependence. The pseudo-second-order rate coefficients are 2-4 orders of magnitude smaller for the reaction with saturated water vapor, indicating the negligible contribution of water in this reaction. This is probably also true for other peroxy radicals (except for HO2), indicating that a large part of previous results on the water enhancement of reaction rate coefficients might have overestimated the influence of water.
Collapse
Affiliation(s)
- Junjie Li
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingyu Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Zhang T, Zhang Y, Tian S, Zhou M, Liu D, Lin L, Zhang Q, Wang R, Muthiah B. Possible atmospheric source of NH 2SO 3H: the hydrolysis of HNSO 2 in the presence of neutral, basic, and acidic catalysts. Phys Chem Chem Phys 2022; 24:4966-4977. [PMID: 35141735 DOI: 10.1039/d1cp04437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NH2SO3H can directly participate in H2SO4-(CH3)2NH-based cluster formation, and thereby substantially enhance the cluster formation rate. Herein, the reaction mechanisms and kinetics for the formation of NH2SO3H from the hydrolysis of HNSO2 without and with neutral (H2O, (H2O)2, and (H2O)3), basic (NH3 and CH3NH2), and acidic (HCOOH, H2SO4, H2SO4⋯H2O, and (H2SO4)2) catalysts were studied theoretically at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311+G(2df,2pd) level. The calculated results showed that neutral, basic, and acidic catalysts decrease the energy barrier by over 18.1 kcal mol-1; meanwhile, the product formation of NH2SO3H was more strongly bonded to neutral, basic, and acidic catalysts than to the reactants HNSO2 and H2O. This reveals that the reported neutral, basic, and acidic catalysts promote the formation of NH2SO3H from the hydrolysis of HNSO2 both kinetically and thermodynamically. Kinetic calculations using the master equation showed that (H2O)2 (100% RH) dominate over the other catalysts within the range of 0-10 km altitudes and 230-320 K with its rate ratio larger by at least 2.98 times, whereas HCOOH (3.2 × 109 molecules cm-3) is the most favorable catalysts at 15 km altitude in the troposphere. Overall, the present results will provide a definitive example that neutral, basic, and acidic catalysts have important influences on atmospheric reactions.
Collapse
Affiliation(s)
- Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Shiyu Tian
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Mi Zhou
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Dong Liu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Ling Lin
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Qiang Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Balaganesh Muthiah
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
6
|
Zhang Y, Cheng Y, Zhang T, Wang R, Ji J, Xia Y, Makroni L, Wang Z, M B. A computational study of the HO2 + SO3 → HOSO2 + 3O2 reaction catalyzed by water monomer, water dimer and small clusters of sulfuric acid: kinetics and atmospheric implications. Phys Chem Chem Phys 2022; 24:18205-18216. [DOI: 10.1039/d1cp03318b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the reaction mechanisms and kinetics for the HO2 + SO3 → HOSO2 + 3O2 reaction catalyzed by water monomer, water dimer and small clusters of sulfuric acid have been...
Collapse
|
7
|
Chemical insights into the atmospheric oxidation of thiophene by hydroperoxyl radical. Sci Rep 2021; 11:13049. [PMID: 34158534 PMCID: PMC8219665 DOI: 10.1038/s41598-021-92221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
The reaction mechanisms and kinetics of thiophene oxidation reactions initiated by hydroperoxyl radical, and decomposition of the related intermediates and complexes, have been considered herein by using high-level DFT and ab initio calculations. The main energetic parameters of all stationary points of the suggested potential energy surfaces have been computed at the BD(T) and CCSD(T) methods, based on the geometries optimized at the B3LYP/6-311 + g(d,p) level of theory. Rate constants of bimolecular reactions (high-pressure limit rate constants) at temperatures from 300 to 3000 K for the first steps of the title reaction have been obtained through the conventional transition state theory (TST), while the pressure dependent rate constants and the rate constants of the second and other steps have been calculated employing the Rice-Ramsperger-Kassel-Marcus/Master equation (RRKM/ME). The results show that the rate constants of addition to α and β carbons have positive temperature dependence and negative pressure dependence. It is found that the additions of HO2 to the α and β carbons of thiophene in the initial steps of the title reaction are the most favored pathways. Also, the addition to the sulfur atom has a minor contribution. But, all efforts for simulating hydrogen abstraction reactions have been unsuccessful. In this complex oxidation reaction, about 12 different products are obtained, including important isomers such as thiophene-epoxide, thiophene-ol, thiophene-oxide, oxathiane, and thiophenone. The calculated total rate constants for generation of all minimum stationary points show that the addition reactions to the α and β carbons are the fastest among all at temperatures below 1000 K, while the proposed multi-step parallel reactions are more competitive at temperatures above 1200 K. Furthermore, important inter-and intra-molecular interactions for some species have been investigated by two well-known quantum chemistry method, the NBO and AIM analyses. Thermochemical properties such as free energy, enthalpy, internal energy, and entropy for thiophene and hydroperoxyl radical and related species in the simulated reactions have been predicted using a combination of the B3LYP and BD(T) methods.
Collapse
|
8
|
Wang R, Wen M, Chen X, Mu R, Zeng Z, Chai G, Lily M, Wang Z, Zhang T. Atmospheric Chemistry of CH 2OO: The Hydrolysis of CH 2OO in Small Clusters of Sulfuric Acid. J Phys Chem A 2021; 125:2642-2652. [PMID: 33755485 DOI: 10.1021/acs.jpca.1c02006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrolysis of CH2OO is not only a dominant sink for the CH2OO intermediate in the atmosphere but also a key process in the formation of aerosols. Herein, the reaction mechanism and kinetics for the hydrolysis of CH2OO catalyzed by the precursors of atmospheric aerosols, including H2SO4, H2SO4···H2O, and (H2SO4)2, have been studied theoretically at the CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2df,2pd) level. The calculated results show that the three catalysts decrease the energy barrier by over 10.3 kcal·mol-1; at the same time, the product formation of HOCH2OOH is more strongly bonded to the three catalysts than to the reactants CH2OO and H2O, revealing that small clusters of sulfuric acid promote the hydrolysis of CH2OO both kinetically and thermodynamically. Kinetic simulations show that the H2SO4-assisted reaction is more favorable than the H2SO4···H2O- (the pseudo-first-order rate constant being 27.9-11.5 times larger) and (H2SO4)2- (between 2.8 × 104 and 3.4 × 105 times larger) catalyzed reactions. Additionally, due to relatively lower concentration of H2SO4, the hydrolysis of CH2OO with H2SO4 cannot compete with the CH2OO + H2O or (H2O)2 reaction within the temperature range of 280-320 K, since its pseudo-first-order rate ratio is smaller by 4-7 or 6-8 orders of magnitude, respectively. However, the present results provide a good example of how small clusters of sulfuric acid catalyze the hydrolysis of an important atmospheric species.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Mingjie Wen
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Xu Chen
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Ruxue Mu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Zhaopeng Zeng
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Guang Chai
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Makroni Lily
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Zhiyin Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| |
Collapse
|
9
|
Liu Y, Wang W. Atmospheric oxidation chemistry of hexafluoroisobutylene initiated by OH radical: Kinetics and mechanism. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kumar A, Mallick S, Kumar P. Effect of water on the oxidation of CO by a Criegee intermediate. Phys Chem Chem Phys 2020; 22:21257-21266. [PMID: 32935677 DOI: 10.1039/d0cp02682d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present work employs the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory to investigate the effect of a water monomer and dimer on the oxidation of carbon-monoxide by a Criegee intermediate (CH2OO). The present work suggests that in the presence of a water monomer the energy barrier of the title reaction reduced to ∼3.4 kcal mol-1 from the corresponding uncatalyzed barrier (∼12.4 kcal mol-1), whereas, in the presence of a water dimer it became as low as ∼-3.2 kcal mol-1. It has also been found that, in the presence of catalysts, additional channels become available from which the title reaction can proceed. The estimated values of rate constants suggest that within the temperature range of 210-320 K, the effective bimolecular rate constant for the water monomer catalyzed channel is 10 to 100 times lower than the bimolecular rate constant of the uncatalyzed channel, whereas in the case of the water dimer it is ∼5-10 times higher than that of the uncatalyzed channel.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | | | | |
Collapse
|
11
|
|
12
|
Cao XM, Li ZR, Wang JB, Li XY. Rate rules for hydrogen abstraction reaction kinetics of alkenes from allylic sites by HO2 radical. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Li W, Shang Y, Ning H, Li J, Luo SN. Reaction pathways and kinetics study on a syngas combustion system: CO + HO 2 in an H 2O environment. Phys Chem Chem Phys 2020; 22:5797-5806. [PMID: 32105282 DOI: 10.1039/c9cp06642j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reaction between CO and HO2 plays a significant role in syngas combustion. In this work, the catalytic effect of single-molecule water on this reaction is theoretically investigated at the CCSD(T)/aug-cc-pV(D,T,Q)Z and CCSD(T)-F12a/jun-cc-pVTZ levels in combination with the M062X/aug-cc-pVTZ level. Firstly, the potential energy surface (PES) of CO + HO2 (water-free) is revisited. The major products CO2 + OH are formed via a cis- or a trans-transition state (TS) channel and the formation of HCO + O2 is minor. In the presence of water, the title reaction has three different pre-reactive complexes (i.e., RC2: COHO2 + H2O, RC3: COH2O + HO2, and RC4: HO2H2O + CO), depending on the initial hydrogen bond formation. Compared to the water-free process, the reaction barriers of the water-assisted process are reduced considerably, due to more stable cyclic TSs and complexes. The rate constants for the bimolecular reaction pathways CO + HO2, RC2, RC3, and RC4 are further calculated using conventional transition state theory (TST) with Eckart asymmetric tunneling correction. For reaction CO + HO2, our calculations are in good agreement with the literature. In addition, the effective rate constants for the water-assisted process decrease by 1-2 orders of magnitude compared to the water-free one at a temperature below 600 K. In particular, the effective rate constants for the water-assisted and water-free processes are 1.55 × 10-28 and 3.86 × 10-26 cm3 molecule-1 s-1 at 300 K, respectively. This implies that the contribution of a single molecule water-assisted process is small and cannot accelerate the title reaction.
Collapse
Affiliation(s)
- Wenrui Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China. and School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Yanlei Shang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China.
| | - Hongbo Ning
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China.
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Sheng-Nian Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China. and The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|