1
|
Lachowicz D, Kmita A, Gajewska M, Trynkiewicz E, Przybylski M, Russek SE, Stupic KF, Woodrum DA, Gorny KR, Celinski ZJ, Hankiewicz JH. Aqueous Dispersion of Manganese-Zinc Ferrite Nanoparticles Protected by PEG as a T 2 MRI Temperature Contrast Agent. Int J Mol Sci 2023; 24:16458. [PMID: 38003646 PMCID: PMC10671015 DOI: 10.3390/ijms242216458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Mixed manganese-zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin-spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime.
Collapse
Affiliation(s)
- Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Elżbieta Trynkiewicz
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Krakow, Poland
| | - Stephen E. Russek
- National Institute of Standards and Technology, 325 Broadway St, Boulder, CO 80305, USA; (S.E.R.)
| | - Karl F. Stupic
- National Institute of Standards and Technology, 325 Broadway St, Boulder, CO 80305, USA; (S.E.R.)
| | - David A. Woodrum
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (D.A.W.); (K.R.G.)
| | - Krzysztof R. Gorny
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (D.A.W.); (K.R.G.)
| | - Zbigniew J. Celinski
- Center for the BioFrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; (Z.J.C.); (J.H.H.)
| | - Janusz H. Hankiewicz
- Center for the BioFrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; (Z.J.C.); (J.H.H.)
| |
Collapse
|
2
|
Kuciakowski J, Stȩpień J, Żukrowski J, Lachowicz D, Żywczak A, Gajewska M, Przybylski M, Pollastri S, Olivi L, Sikora M, Kmita A. Thermal Decomposition Pathways of Zn xFe 3–xO 4 Nanoparticles in Different Atmospheres. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliusz Kuciakowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Joanna Stȩpień
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jan Żukrowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Dorota Lachowicz
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Antoni Żywczak
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marek Przybylski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Simone Pollastri
- Elettra - Sincrotrone Trieste S.C.p.A, Strada Statale 14−km 163,5 in AREA Science Park, 34149 Basovizza, Trieste Italy
| | - Luca Olivi
- Elettra - Sincrotrone Trieste S.C.p.A, Strada Statale 14−km 163,5 in AREA Science Park, 34149 Basovizza, Trieste Italy
| | - Marcin Sikora
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Angelika Kmita
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Lavorato GC, Rubert AA, Xing Y, Das R, Robles J, Litterst FJ, Baggio-Saitovitch E, Phan MH, Srikanth H, Vericat C, Fonticelli MH. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles. NANOSCALE 2020; 12:13626-13636. [PMID: 32558841 DOI: 10.1039/d0nr02069a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetite (Fe3O4) nanoparticles are one of the most studied nanomaterials for different nanotechnological and biomedical applications. However, Fe3O4 nanomaterials gradually oxidize to maghemite (γ-Fe2O3) under conventional environmental conditions leading to changes in their functional properties that determine their performance in many applications. Here we propose a novel strategy to control the surface chemistry of monodisperse 12 nm magnetite nanoparticles by means of a 3 nm-thick Zn-ferrite epitaxial coating in core/shell nanostructures. We have carried out a combined Mössbauer spectroscopy, dc magnetometry, X-ray photoelectron spectroscopy and spatially resolved electron energy loss spectroscopy study on iron oxide and Fe3O4/Zn0.6Fe2.4O4 core/shell nanoparticles aged under ambient conditions for 6 months. Our results reveal that while the aged iron oxide nanoparticles consist of a mixture of γ-Fe2O3 and Fe3O4, the Zn-ferrite-coating preserves a highly stoichiometric Fe3O4 core. Therefore, the aged core/shell nanoparticles present a sharp Verwey transition, an increased saturation magnetization and the possibility of tuning the effective anisotropy through exchange-coupling at the core/shell interface. The inhibition of the oxidation of the Fe3O4 cores can be accounted for in terms of the chemical nature of the shell layer and an epitaxial crystal symmetry matching between the core and the shell.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|