1
|
Caturello NAMS. Dimensionality Engineering and Spin-Splitting Enhancement in Heterostructured Perovskites Through Organic Cation Chirality. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11055-11061. [PMID: 39919019 DOI: 10.1021/acsami.4c22742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Enhanced spin-splitting driven by inversion asymmetry can be effectively achieved through the incorporation of chiral organic cations in hybrid organic-inorganic systems. Herein, we investigated the mechanisms and implications of chirality transfer in heterostructured perovskites belonging to the (PbBr2)2A2PbBr4 family, where A represents the organic cation. These structures are characterized by an inorganic-organic-inorganic stacking configuration comprising one perovskite monolayer and one PbBr2 intergrowth domain. Our findings indicate that all heterostructures are likely to exhibit energetic stability. Importantly, the presence of chiral cations introduces local asymmetries that facilitate significant spin-splitting effects. Additionally, a racemic mixture of chiral cations can induce a transition from two-dimensional to zero-dimensional character within the perovskite domain of the heterostructure. The dimensionality transition observed for the racemic mixture of isomers within the structure is attributed to the effect of hydrogen bond asymmetries and the enhanced lattice strain, leading the 2D perovskite framework to disrupt into isolated octahedra that allow breaking of centrosymmetry, in stark contrast with racemic 2D perovskites previously reported in the literature. Consequently, we predict that the introduction of chiral cations into perovskite heterostructures can create stable systems where a single degree of freedom effectively modulates both spin-resolved properties and dimensionality. This discovery provides a vital design principle for the simultaneous tuning of spin splitting and perovskite dimensionality.
Collapse
Affiliation(s)
- Naidel A M S Caturello
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Inui GK, Silveira JFRV, Dias AC, Besse R, Da Silva JLF. Ab initioscreening of two-dimensional Cu Qxand Ag Qxchalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:305703. [PMID: 35381580 DOI: 10.1088/1361-648x/ac6475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) chalcogenides have attracted great interest from the scientific community due to their intrinsic physical-chemical properties, which are suitable for several technological applications. However, most of the reported studies focused on particular compounds and composition, e.g., MoS2, MoSe2, WS2, and WSe2. Thus, there is an increased interest to extend our knowledge on 2D chalcogenides. Here, we report a density functional theory (DFT) screening of 2D coinage-metal chalcogenides (MQx), whereM= Cu, Ag,Q= S, Se, Te,x= 0.5, 1.0, 1.5, 2.0, with the aim to improve our atomistic understanding of the physical-chemical properties as a function of cation (M), anion (Q), and composition (x). Based on 258 DFT calculations, we selected a set of 22 stableMQxmonolayers based on phonons analyses, where we identified 9 semiconductors (7 AgQxand 2 CuQx), with band gaps from 0.07 eV up to 1.67 eV, while the remaining systems have a metallic character. Using all 258 systems, we found a logarithmic correlation between the average weighted bond lengths and effective coordination number of cations and anions. As expected, the monolayer cohesive energies increase with the radius of theQspecies (i.e., from S to Te). Furthermore, an increase in the anion size diminishes the work function for nearly allMQxmonolayers, which can be explained by the nature of the electronic states at the valence band maximum.
Collapse
Affiliation(s)
- Guilherme K Inui
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil
| | - Julian F R V Silveira
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil
| | - A C Dias
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil
| | - Rafael Besse
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
3
|
Fonseca HAB, Verga LG, Da Silva JLF. Ab Initio Study of CO 2 Activation on Pristine and Fe-Decorated WS 2 Nanoflakes. J Phys Chem A 2021; 125:7769-7777. [PMID: 34472858 DOI: 10.1021/acs.jpca.1c04436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an intense race by the scientific community to identify materials with potential applications for the conversion of carbon dioxide (CO2) into new products. To extend the range of possibilities and explore new effects, in this work, we employ density functional theory calculations to investigate the presence of edge effects in the adsorption and activation of CO2 on pristine and Fe-decorated (WS2)16 nanoflakes. We found that Fe has an energetic preference for hollow sites on pristine nanoflakes, binding with at least two two-fold edge S atoms and one or two three-fold core S atoms. Fe adsorption on the bridge sites occurs only at the edges, which is accompanied by the breaking of W-S bonds in most cases (higher energy configurations). CO2 activates on (WS2)16 with an OCO angle of about 129° only at higher energy configurations, while CO2 binds via a physisorption mechanism, linear structure, in the lowest energy configuration. For CO2 on Fe/(WS2)16, the activation occurs at lower energies only by the direct interaction of CO2 with Fe sites located near to the nanoflake edges, which clearly indicates the enhancement of the catalytic activity of (WS2)16 nanoflakes by Fe decoration. Thus, our study indicates that decorating WS2 nanoflakes with TM atoms could be an interesting strategy to explore alternative catalysts based on two-dimensional materials.
Collapse
Affiliation(s)
- Henrique A B Fonseca
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Lucas G Verga
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
4
|
Danielsen DR, Lyksborg-Andersen A, Nielsen KES, Jessen BS, Booth TJ, Doan MH, Zhou Y, Bøggild P, Gammelgaard L. Super-Resolution Nanolithography of Two-Dimensional Materials by Anisotropic Etching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41886-41894. [PMID: 34431654 DOI: 10.1021/acsami.1c09923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructuring allows altering of the electronic and photonic properties of two-dimensional (2D) materials. The efficiency, flexibility, and convenience of top-down lithography processes are, however, compromised by nanometer-scale edge roughness and resolution variability issues, which especially affect the performance of 2D materials. Here, we study how dry anisotropic etching of multilayer 2D materials with sulfur hexafluoride (SF6) may overcome some of these issues, showing results for hexagonal boron nitride (hBN), tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2), and molybdenum ditelluride (MoTe2). Scanning electron microscopy and transmission electron microscopy reveal that etching leads to anisotropic hexagonal features in the studied transition metal dichalcogenides, with the relative degree of anisotropy ranked as: WS2 > WSe2 > MoTe2 ∼ MoS2. Etched holes are terminated by zigzag edges while etched dots (protrusions) are terminated by armchair edges. This can be explained by Wulff constructions, taking the relative stabilities of the edges and the AA' stacking order into account. Patterns in WS2 are transferred to an underlying graphite layer, demonstrating a possible use for creating sub-10 nm features. In contrast, multilayer hBN exhibits no lateral anisotropy but shows consistent vertical etch angles, independent of crystal orientation. Using an hBN crystal as the base, ultrasharp corners can be created in lithographic patterns, which are then transferred to a graphite crystal underneath. We find that the anisotropic SF6 reactive ion etching process makes it possible to downsize nanostructures and obtain smooth edges, sharp corners, and feature sizes significantly below the resolution limit of electron beam lithography. The nanostructured 2D materials can be used themselves or as etch masks to pattern other nanomaterials.
Collapse
Affiliation(s)
- Dorte R Danielsen
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Anton Lyksborg-Andersen
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
- DTU Nanolab - National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
| | - Kirstine E S Nielsen
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Timothy J Booth
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Manh-Ha Doan
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Yingqiu Zhou
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Peter Bøggild
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| | - Lene Gammelgaard
- Department of Physics, Technical University of Denmark (DTU), Kgs. Lyngby 2800, Denmark
- Centre for Nanostructured Graphene (CNG), Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
5
|
Bezerra RC, Mendonça JPAD, Mendes PCD, Passos RR, Da Silva JLF. Role of the OH-group in the adsorption properties of methanol, ethanol, and ethylene glycol on 15-atom 3d, 4d, and 5d transition-metal clusters. Phys Chem Chem Phys 2021; 23:17553-17566. [PMID: 34369523 DOI: 10.1039/d1cp01806j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of alcohols on transition-metal (TM) substrates has received the attention of many researchers due to the applications of alcohols in several technological fields. However, our atomic-level understanding is still far from satisfactory, in particular for the interaction of alcohols with finite-size TM clusters, where new effects can arise due to the presence of quantum-size effects. In this work, we report a theoretical investigation of the adsorption properties of methanol, ethanol, and ethylene glycol on 12 different 3d, 4d, and 5d TM15 clusters based on density functional theory calculations within the semi-empirical D3 van der Waals corrections. From the correlation analysis of all the lowest- and high-energy configurations, we identified the adsorption modes of methanol, ethanol, and ethylene glycol on the TM15 clusters, in which the OH group binds to the cationic TM sites via the O-TM and H-TM interactions. Due to the relatively weak alcohol-TM15 interaction, the changes induced on the TM15 clusters are small, except for Au15 and Ru15, where the bare cluster changes its structure to a nearby minimum in the potential energy surface. The adsorption energy for the alcohol/TM15 systems is correlated to the combination of several parameters, in which the main contribution is connected with the O-TM interaction and the HOTM angles. Furthermore, the TM electronegativity is an important descriptor for the methanol and ethanol adsorption energies, while charge transfer is important for ethylene glycol.
Collapse
Affiliation(s)
- Raquel C Bezerra
- Department of Chemistry, Federal University of Amazonas, Av. General Rodrigo Octávio, 6200, Coroado I, 69080-900, Manaus, AM, Brazil
| | | | | | | | | |
Collapse
|
6
|
Lu Z, Prange MP, Sushko PV. Tuning Electronic Properties of 2D Materials Using Metal Adsorbates: Cu at WTe 2 Edges. J Phys Chem Lett 2021; 12:6596-6603. [PMID: 34251220 DOI: 10.1021/acs.jpclett.1c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional materials exhibit properties promising for novel applications. Topologically protected states at their edges can be harnessed for use in quantum devices. We use ab initio simulations to examine properties of edges in 1T'-WTe2 monolayers, known to exhibit topological order, and their interactions with Cu atoms. Comparison of (010)-oriented edges that have the same composition but different terminations shows that, as the number of Cu atoms increases, their thermodynamically preferred arrangement depends on the details of the edge structure. Cu atoms aggregate into a cluster at the most stable edge; while the cluster is nonmagnetic, it spin-polarizes the W atoms along the edge, which removes the topological protection. At the metastable edge, Cu atoms form a chain incorporated into the WTe2 lattice; the topological state is preserved in spite of the dramatic edge restructuring. This suggests that exploiting interactions of metal species with metastable edge terminations can provide a path toward noninvasive interfaces.
Collapse
Affiliation(s)
- Zexi Lu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Micah P Prange
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Peter V Sushko
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Caturello NAMS, F R V Silveira J, Da Silva JLF. Ab initio insights into the stabilization and binding mechanisms of MoS 2 nanoflakes supported on graphene. Phys Chem Chem Phys 2020; 22:26865-26875. [PMID: 33205791 DOI: 10.1039/d0cp04573j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atomistic understanding of transition-metal dichalcogenide (TMD) nanoflakes supported on graphene (Gr) plays an important role in the tuning of the physicochemical properties of two-dimensional (2D) materials; however, our current atom-level understanding of 2D-TMD nanoflakes on Gr is far from satisfactory. Thus, we report a density functional theory investigation into the stabilization and binding mechanisms of (MoS2)n/Gr, where n = 1, 4, 6, 9, 12 and 16. We found an evolution of the (MoS2)n…Gr interactions from covalent and hybridization contributions for smaller nanoflakes (n = 1, 4) to vdW interactions for larger (MoS2)n nanoflakes (n ≥ 6); however, the coupling of the (MoS2)n and Gr electronic states for n = 1 and 4 is not intense enough to change the Dirac cones at the Gr monolayer. On average, the 1T'- and 2H-(MoS2)n nanoflakes bind with similar adsorption/interaction energies with Gr, and hence the (MoS2)n…Gr interactions do not change the high energetic preference of the 1T'- structures, which can be explained by the stabilizing role of the S-terminated edges in the 1T'-(MoS2)n in contrast with the destabilizing role of the edges in the 2H-(MoS2)n nanoflakes.
Collapse
Affiliation(s)
- Naidel A M S Caturello
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | | | | |
Collapse
|
8
|
Harries RW, Brown CJ, Ogilvie SP, Large MJ, Amorim Graf A, Clifford K, Simon T, Giamas G, Dalton AB, King AAK. Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. J Phys Chem B 2020; 124:7184-7193. [PMID: 32706967 DOI: 10.1021/acs.jpcb.0c05573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of nanomaterials in technology is limited by challenges in their processing into macroscopic structures with reliable and scalable methods. Herein, it is demonstrated that using scalable fabrication methods such as liquid-phase exfoliation, it is possible to produce dispersions of a wide variety of layered nanomaterials, including the first demonstration of boron nitride, with controllable and standardized size and thickness scaling. These can be used, as-produced, for Langmuir deposition, to create single layer films with tuneable density. Of particular importance, we show that the difference in edge chemistry of these materials dictates the film formation process, and therefore can be used to provide a generic fabrication methodology that is demonstrated for various layered nanomaterials, including graphene, boron nitride, and transition metal dichalcogenides. We show that this leads to controllable cancer cell growth on graphene substrates with different edge densities but comparable surface coverage, which can be produced on a statistically relevant cell study amount. This opens pathways for the generic fabrication of a range of layered nanomaterial films for various applications toward a commercially viable film fabrication technology.
Collapse
Affiliation(s)
- Rhiannon W Harries
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Christopher J Brown
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Sean P Ogilvie
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Matthew J Large
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Aline Amorim Graf
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Keiran Clifford
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Alice A K King
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| |
Collapse
|
9
|
Di Bartolomeo A. Emerging 2D Materials and Their Van Der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E579. [PMID: 32235754 PMCID: PMC7153384 DOI: 10.3390/nano10030579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials and their van der Waals heterojunctions offer the opportunity to combine layers with different properties as the building blocks to engineer new functional materials for high-performance devices, sensors, and water-splitting photocatalysts. A tremendous amount of work has been done thus far to isolate or synthesize new 2D materials as well as to form new heterostructures and investigate their chemical and physical properties. This article collection covers state-of-the-art experimental, numerical, and theoretical research on 2D materials and on their van der Waals heterojunctions for applications in electronics, optoelectronics, and energy generation.
Collapse
Affiliation(s)
- Antonio Di Bartolomeo
- Physics Department "E.R.Caianiello" and "Interdepartmental center NANOMATES", University of Salerno, Fisciano, 84084 Salerno, Italy
| |
Collapse
|