1
|
Yuan Y, Qian C, Sun S, Lei Y, Yang J, Yang L, Fu B, Yan S, Zhu R, Li H, Chen X, Zuo Z, Li BB, Xiao YF, Zhong H, Wang C, Jin K, Gong Q, Xu X. Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr 3 Quantum Dots Using a High- Q Microdisk Cavity. J Phys Chem Lett 2025; 16:1095-1102. [PMID: 39844533 DOI: 10.1021/acs.jpclett.4c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr3 QDs by coupling them to a high quality (Q) factor SiO2 microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays. As such, we obtain a 5.9-fold enhancement of the PL intensity and a 5.6-fold enhancement of the emission rate. Moreover, the different enhancement behaviors for phonon sidebands allow us to further explore the different components in the broad emission peak of ensembled QDs. These results demonstrate the great potential of microdisk cavities in enhancing the luminescence in optoelectronic devices and exploring the exciton-photophysics of perovskite QDs.
Collapse
Affiliation(s)
- Yu Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenjiang Qian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shipei Sun
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuechen Lei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Longlong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Bowen Fu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiqing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
2
|
Silalahi VC, Kim D, Kim M, Adhikari S, Jun S, Cho YH, Lee D, Lee CL, Jang Y. Over a thousand-fold enhancement of the spontaneous emission rate for stable core-shell perovskite quantum dots through coupling with novel plasmonic nanogaps. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:369-376. [PMID: 39633672 PMCID: PMC11501862 DOI: 10.1515/nanoph-2023-0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 12/07/2024]
Abstract
High Purcell enhancement structures and stable emitters are essential prerequisites for the successful development of novel fast-operating active devices. Furthermore, a uniform enhancement of the spontaneous emission rate is critical for practical applications. Despite considerable efforts being made to meet these requirements, achieving them still remains a challenging task. In this work, we demonstrate that placing stable core-shell perovskite quantum dots (PQDs) in the nanogap region of hole/sphere-based nanogap structures (HSNGs) can enhance the spontaneous emission rate by more than a thousand-fold (up to a factor of ∼1080) compared to PQDs in solution. This enhancement factor is the highest value reported using PQDs, exceeding previously reported values by two orders of magnitude. Notably, the enhancement factor of the emission rate in the HSNG maintains large values across the samples, with values ranging from ∼690 to ∼1080. Furthermore, the structural stabilities of the PQDs are remarkably enhanced with the incorporation of SiO2 shells, which is validated by monitoring the changes in photoluminescence intensities over time during continuous laser exposure. As a result, the HSNG with stable core-shell PQDs offers great potential for fast optical device applications that require high performance and long-term operational stability.
Collapse
Affiliation(s)
| | - Dokyum Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon34134, Republic of Korea
| | - Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon34134, Republic of Korea
| | - Seongmoon Jun
- Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics and KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon34134, Republic of Korea
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon34134, Republic of Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon34134, Republic of Korea
| |
Collapse
|
3
|
Dolgopolova EA, Li D, Hartman ST, Watt J, Ríos C, Hu J, Kukkadapu R, Casson J, Bose R, Malko AV, Blake AV, Ivanov S, Roslyak O, Piryatinski A, Htoon H, Chen HT, Pilania G, Hollingsworth JA. Strong Purcell enhancement at telecom wavelengths afforded by spinel Fe 3O 4 nanocrystals with size-tunable plasmonic properties. NANOSCALE HORIZONS 2022; 7:267-275. [PMID: 34908075 DOI: 10.1039/d1nh00497b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developments in the field of nanoplasmonics have the potential to advance applications from information processing and telecommunications to light-based sensing. Traditionally, nanoscale noble metals such as gold and silver have been used to achieve the targeted enhancements in light-matter interactions that result from the presence of localized surface plasmons (LSPs). However, interest has recently shifted to intrinsically doped semiconductor nanocrystals (NCs) for their ability to display LSP resonances (LSPRs) over a much broader spectral range, including the infrared (IR). Among semiconducting plasmonic NCs, spinel metal oxides (sp-MOs) are an emerging class of materials with distinct advantages in accessing the telecommunications bands in the IR and affording useful environmental stability. Here, we report the plasmonic properties of Fe3O4 sp-MO NCs, known previously only for their magnetic functionality, and demonstrate their ability to modify the light-emission properties of telecom-emitting quantum dots (QDs). We establish the synthetic conditions for tuning sp-MO NC size, composition and doping characteristics, resulting in unprecedented tunability of electronic behavior and plasmonic response over 450 nm. In particular, with diameter-dependent variations in free-electron concentration across the Fe3O4 NC series, we introduce a strong NC size dependency onto the optical response. In addition, our observation of plasmonics-enhanced decay rates from telecom-emitting QDs reveals Purcell enhancement factors for simple plasmonic-spacer-emitter sandwich structures up to 51-fold, which are comparable to values achieved previously only for emitters in the visible range coupled with conventional noble metal NCs.
Collapse
Affiliation(s)
- Ekaterina A Dolgopolova
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dongfang Li
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Steven T Hartman
- Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - John Watt
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Carlos Ríos
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Juejun Hu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ravi Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Joanna Casson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Riya Bose
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Anton V Malko
- Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Anastasia V Blake
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Sergei Ivanov
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Oleksiy Roslyak
- Department of Physics and Engineering Physics, Fordham University, Bronx, NY 10458, USA
| | - Andrei Piryatinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Han Htoon
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Hou-Tong Chen
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Ghanshyam Pilania
- Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jennifer A Hollingsworth
- Materials Physics and Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
4
|
Ai B, Fan Z, Wong ZJ. Plasmonic-perovskite solar cells, light emitters, and sensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:5. [PMID: 35070349 PMCID: PMC8752666 DOI: 10.1038/s41378-021-00334-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The field of plasmonics explores the interaction between light and metallic micro/nanostructures and films. The collective oscillation of free electrons on metallic surfaces enables subwavelength optical confinement and enhanced light-matter interactions. In optoelectronics, perovskite materials are particularly attractive due to their excellent absorption, emission, and carrier transport properties, which lead to the improved performance of solar cells, light-emitting diodes (LEDs), lasers, photodetectors, and sensors. When perovskite materials are coupled with plasmonic structures, the device performance significantly improves owing to strong near-field and far-field optical enhancements, as well as the plasmoelectric effect. Here, we review recent theoretical and experimental works on plasmonic perovskite solar cells, light emitters, and sensors. The underlying physical mechanisms, design routes, device performances, and optimization strategies are summarized. This review also lays out challenges and future directions for the plasmonic perovskite research field toward next-generation optoelectronic technologies.
Collapse
Affiliation(s)
- Bin Ai
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
- School of Microelectronics and Communication Engineering, Chongqing University, 400044 Chongqing, P.R. China
- Chongqing Key Laboratory of Bioperception & Intelligent Information Processing, 400044 Chongqing, P.R. China
| | - Ziwei Fan
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|