1
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Wen B, Selloni A. Hydrogen Bonds and H 3O + Formation at the Water Interface with Formic Acid Covered Anatase TiO 2. J Phys Chem Lett 2021; 12:6840-6846. [PMID: 34279942 DOI: 10.1021/acs.jpclett.1c01886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carboxylic acid-modified TiO2 surfaces in aqueous environment are of widespread interest, yet atomic-scale understanding of their structure is limited. We here investigate formic acid (FA) on anatase TiO2 (101) (A-101) in contact with water using density functional theory (DFT) and ab initio molecular dynamics (AIMD). Isolated FA molecules adsorbed in a deprotonated bridging bidentate (BD) form on A-101 are found to remain stable at the interface with water, with the acid proton transferred to a surface oxygen to form a surface bridging hydroxyl (ObrH). With increasing FA coverage, adsorbed monolayers of only BD and successively of alternating monodentate (MD) and BD species give rise to a higher concentration of surface ObrH's. Simulations of these adsorbed monolayers in water environment show that some protons are released from the surface ObrH's to water resulting in a negatively charged surface with nearby solvated H3O+ ions. These results provide insight into the complex acid-base equilibrium between an oxide surface, adsorbates and water and can also help obtain a better understanding of the wetting properties of chemically modified TiO2 surfaces.
Collapse
Affiliation(s)
- Bo Wen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- School of Physics and Electronics, Henan University, Kaifeng 475001, P. R. China
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
López-Caballero P, Miret-Artés S, Mitrushchenkov AO, de Lara-Castells MP. Ag 5-induced stabilization of multiple surface polarons on perfect and reduced TiO 2 rutile (110). J Chem Phys 2020; 153:164702. [PMID: 33138404 DOI: 10.1063/5.0029099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The recent advent of cutting-edge experimental techniques allows for a precise synthesis of subnanometer metal clusters composed of just a few atoms, opening new possibilities for subnanometer science. In this work, via first-principles modeling, we show how the decoration of perfect and reduced TiO2 surfaces with Ag5 atomic clusters enables the stabilization of multiple surface polarons. Moreover, we predict that Ag5 clusters are capable of promoting defect-induced polarons transfer from the subsurface to the surface sites of reduced TiO2 samples. For both planar and pyramidal Ag5 clusters, and considering four different positions of bridging oxygen vacancies, we model up to 14 polaronic structures, leading to 134 polaronic states. About 71% of these configurations encompass coexisting surface polarons. The most stable states are associated with large inter-polaron distances (>7.5 Å on average), not only due to the repulsive interaction between trapped Ti3+ 3d1 electrons, but also due to the interference between their corresponding electronic polarization clouds [P. López-Caballero et al., J. Mater. Chem. A 8, 6842-6853 (2020)]. As a result, the most stable ferromagnetic and anti-ferromagnetic arrangements are energetically quasi-degenerate. However, as the average inter-polarons distance decreases, most (≥70%) of the polaronic configurations become ferromagnetic. The optical excitation of the midgap polaronic states with photon energy at the end of the visible region causes the enlargement of the polaronic wave function over the surface layer. The ability of Ag5 atomic clusters to stabilize multiple surface polarons and extend the optical response of TiO2 surfaces toward the visible region bears importance in improving their (photo-)catalytic properties and illustrates the potential of this new generation of subnanometer-sized materials.
Collapse
Affiliation(s)
- P López-Caballero
- Instituto de Física Fundamental (AbinitSim Unit), CSIC, Serrano 123, 28006 Madrid, Spain
| | - S Miret-Artés
- Instituto de Física Fundamental (AbinitSim Unit), CSIC, Serrano 123, 28006 Madrid, Spain
| | - A O Mitrushchenkov
- MSME, University Gustave Eiffel, CNRS UMR 8208, University Paris Est Creteil, F-77454 Marne-la-Vallée, France
| | - M P de Lara-Castells
- Instituto de Física Fundamental (AbinitSim Unit), CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
4
|
Lee E, Park C, Lee DW, Lee G, Park HY, Jang JH, Kim HJ, Sung YE, Tak Y, Yoo SJ. Tunable Synthesis of N,C-Codoped Ti 3+-Enriched Titanium Oxide Support for Highly Durable PEMFC Cathode. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eungjun Lee
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changmin Park
- Department of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong Wook Lee
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering. Korea University, Seoul 02841, Republic of Korea
| | - Gibaek Lee
- School of Chemical Engineering, Yeungnam University, 38541 Gyeongsan, Republic of Korea
| | - Hee-Young Park
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jong Hyun Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyoung-Juhn Kim
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yung-Eun Sung
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongsug Tak
- Department of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST, Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|