1
|
Tao B, Wang F, Zhu L. Liquid-liquid phase separation-related signature predicts prognosis and therapeutic response in esophageal adenocarcinoma. Anal Chim Acta 2024; 1330:343202. [PMID: 39489946 DOI: 10.1016/j.aca.2024.343202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Esophageal adenocarcinoma is a leading cause of mortality worldwide. New evidence indicates that liquid-liquid phase separation is related to malignancies. The current study aims at exploring the functions of liquid-liquid phase separation within esophageal adenocarcinoma. Patients within the TCGA dataset were classified using liquid-liquid phase separation-related genes. Significantly differentially expressed genes and prognostic factors for overall survival have been screened by Cox regression. Based on the liquid-liquid phase separation score, the construction of a prognostic model and liquid-liquid phase separation signature was constructed. Tumor mutation burden and drug sensitivity were analyzed in two groups: high liquid-liquid phase separation scores, and low liquid-liquid phase separation scores. According to liquid-liquid phase separation, some small-molecule compounds targeting esophageal adenocarcinoma were screened. The results were verified in vitro with an external cohort. RESULTS 87 samples are involved, and 61 liquid-liquid phase separation-related genes may influence esophageal adenocarcinoma by changing DNA conformation and metabolism. Meanwhile, based on a high liquid-liquid phase separation score and low score group including 43 patients, it is found that the result significantly lowered the 5-year overall survival to 32.6 %, compared to 64.8 % in the low-score group of 44 patients with p < 0.001. The high score group had an average TIDE score of 0.27 versus 0.14 in the low-score group, with p = 0.003. The median tumor mutation burden was 9.1 mutations/Mb in the high-score group versus 6.4 mutations/Mb in the low-score group, with p = 0.011. The predictive model worked very well, with area under the curve values of 0.82, 0.79, and 0.76 for 1-, 3-, and 5-year survival, respectively. Liquid-liquid phase separation has been validated as an effective prognostic biomarker and drug sensitivity predictor. SIGNIFICANCE Liquid-liquid phase separation is potentially implicated in esophageal adenocarcinoma and works as a prognostic biomarker assessment of vulnerability to LLPS, which could help develop individualized therapies by showing how one is situated about various medications where responses vary across the body.
Collapse
Affiliation(s)
- Bo Tao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Feng Wang
- Department of Radiotherapy, Shanghai Fourth Peoples Hospital, School of Medicine, Tongji University, No. 1878, Sichuan North Road, Shanghai, 200081, China
| | - Lei Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Lathuiliere A, Jo Y, Perbet R, Donahue C, Commins C, Quittot N, Fan Z, Bennett RE, Hyman BT. Specific detection of tau seeding activity in Alzheimer's disease using rationally designed biosensor cells. Mol Neurodegener 2023; 18:53. [PMID: 37553663 PMCID: PMC10408046 DOI: 10.1186/s13024-023-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prion-like propagation of tau in neurodegenerative disorders implies that misfolded pathological tau can recruit the normal protein and template its aggregation. Here, we report the methods for the development of sensitive biosensor cell lines for the detection of tau seeding activity. RESULTS We performed the rational design of novel tau probes based on the current structural knowledge of pathological tau aggregates in Alzheimer's disease. We generated Förster resonance energy transfer (FRET)-based biosensor stable cell lines and characterized their sensitivity, specificity, and overall ability to detect bioactive tau in human samples. As compared to the reference biosensor line, the optimized probe design resulted in an increased efficiency in the detection of tau seeding. The increased sensitivity allowed for the detection of lower amount of tau seeding competency in human brain samples, while preserving specificity for tau seeds found in Alzheimer's disease. CONCLUSIONS This next generation of FRET-based biosensor cells is a novel tool to study tau seeding activity in Alzheimer's disease human samples, especially in samples with low levels of seeding activity, which may help studying early tau-related pathological events.
Collapse
Affiliation(s)
- Aurelien Lathuiliere
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
- Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Youhwa Jo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Cameron Donahue
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Noé Quittot
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, 114 16Th Street, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Paul S, Lyons A, Kirchner R, Woodside MT. Quantifying Oligomer Populations in Real Time during Protein Aggregation Using Single-Molecule Mass Photometry. ACS NANO 2022; 16:16462-16470. [PMID: 36126253 PMCID: PMC9620981 DOI: 10.1021/acsnano.2c05739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases. The early stages of the aggregation cascade are crucial because small oligomers are thought to be key neurotoxic species, but they are difficult to study because they feature heterogeneous mixtures of transient states. We show how the populations of different oligomers can be tracked as they evolve over time during aggregation using single-molecule mass photometry to measure individually the masses of the oligomers present in solution. By applying the approach to tau protein, whose aggregates are linked to diseases including Alzheimer's and frontotemporal dementia, we found that tau existed in an equilibrium between monomers, dimers, and trimers before aggregation was triggered. Once aggregation commenced, the monomer population dropped continuously, paired first with a rise in the population of the smallest oligomers and then a steep drop as the protein was incorporated into larger oligomers and fibrils. Fitting these populations to kinetic models allowed different models of aggregation to be tested, identifying the most likely mechanism and quantifying the microscopic rates for each step in the mechanism. This work demonstrates a powerful approach for the characterization of previously inaccessible regimes in protein aggregation and building quantitative mechanistic models.
Collapse
Affiliation(s)
- Simanta
Sarani Paul
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Aaron Lyons
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Russell Kirchner
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Michael T. Woodside
- Department
of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G2E1, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G2E1, Canada
| |
Collapse
|
4
|
Sinnige T. Molecular mechanisms of amyloid formation in living systems. Chem Sci 2022; 13:7080-7097. [PMID: 35799826 PMCID: PMC9214716 DOI: 10.1039/d2sc01278b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/28/2022] Open
Abstract
Fibrillar protein aggregation is a hallmark of a variety of human diseases. Examples include the deposition of amyloid-β and tau in Alzheimer's disease, and that of α-synuclein in Parkinson's disease. The molecular mechanisms by which soluble proteins form amyloid fibrils have been extensively studied in the test tube. These investigations have revealed the microscopic steps underlying amyloid formation, and the role of factors such as chaperones that modulate these processes. This perspective explores the question to what extent the mechanisms of amyloid formation elucidated in vitro apply to human disease. The answer is not yet clear, and may differ depending on the protein and the associated disease. Nevertheless, there are striking qualitative similarities between the aggregation behaviour of proteins in vitro and the development of the related diseases. Limited quantitative data obtained in model organisms such as Caenorhabditis elegans support the notion that aggregation mechanisms in vivo can be interpreted using the same biophysical principles established in vitro. These results may however be biased by the high overexpression levels typically used in animal models of protein aggregation diseases. Molecular chaperones have been found to suppress protein aggregation in animal models, but their mechanisms of action have not yet been quantitatively analysed. Several mechanisms are proposed by which the decline of protein quality control with organismal age, but also the intrinsic nature of the aggregation process may contribute to the kinetics of protein aggregation observed in human disease.
Collapse
Affiliation(s)
- Tessa Sinnige
- Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
5
|
Yao QQ, Wen J, Perrett S, Wu S. Distinct lipid membrane-mediated pathways of Tau assembly revealed by single-molecule analysis. NANOSCALE 2022; 14:4604-4613. [PMID: 35260870 DOI: 10.1039/d1nr05960b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The conversion of intrinsically disordered Tau to highly ordered amyloid aggregates is associated with a wide range of neurodegenerative diseases termed tauopathies. The presence of lipid bilayer membranes is a critical factor that accelerates the abnormal aggregation of Tau protein. However, the lipid membrane-induced conformational changes of Tau and the mechanism for the accelerated fibrillation remain elusive. In this study, single-molecule Förster resonance energy transfer (smFRET) and fluorescence correlation spectroscopy (FCS) were applied to detect the conformational changes and intermolecular interactions of full-length Tau in the presence of different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) vesicles. The results show that the conformation of Tau becomes expanded with opening of the N-terminal and C-terminal domains of Tau upon binding to DMPS. At low DMPS concentrations, Tau forms oligomers with a partially extended conformation which facilitates the amyloid fibrillization process. At high DMPS concentrations, Tau monomer binds to lipid membranes in a fully expanded conformation at low density thus inhibiting intermolecular aggregation. Our study reveals the underlying mechanisms by which lipid membranes influence amyloid formation of Tau, providing a foundation for further understanding of the pathogenesis and physiology of the interplay between Tau protein and lipid membranes.
Collapse
Affiliation(s)
- Qiong-Qiong Yao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jitao Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
6
|
Wen J, Hong L, Krainer G, Yao QQ, Knowles TPJ, Wu S, Perrett S. Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. J Am Chem Soc 2021; 143:13056-13064. [PMID: 34374536 DOI: 10.1021/jacs.1c03078] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins into biomolecular condensates has emerged as a fundamental principle underpinning cellular function and malfunction. Indeed, many human pathologies, including protein misfolding diseases, are linked to aberrant liquid-to-solid phase transitions, and disease-associated protein aggregates often nucleate through phase separation. The molecular level determinants that promote pathological phase transitions remain, however, poorly understood. Here we study LLPS of the microtubule-associated protein Tau, whose aberrant aggregation is associated with a number of neurodegenerative diseases, including Alzheimer's disease. Using single molecule spectroscopy, we probe directly the conformational changes that the protein undergoes as a result of LLPS. We perform single-molecule FRET and fluorescence correlation spectroscopy experiments to monitor the intra- and intermolecular changes and demonstrate that the N- and C-terminal regions of Tau become extended, thus exposing the microtubule-binding region. These changes facilitate intermolecular interactions and allow for the formation of nanoscale clusters of Tau. Our results suggest that these clusters can promote the fibrillization of Tau, which can be dramatically accelerated by disease-related mutations P301L and P301S. Our findings thus provide important molecular insights into the mechanism of protein phase separation and the conversion of protein condensates from functional liquid assemblies to pathological aggregates.
Collapse
Affiliation(s)
- Jitao Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Liu Hong
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Qiong-Qiong Yao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
7
|
Irwin R, Faust O, Petrovic I, Wolf SG, Hofmann H, Rosenzweig R. Hsp40s play complementary roles in the prevention of tau amyloid formation. eLife 2021; 10:69601. [PMID: 34369377 PMCID: PMC8437434 DOI: 10.7554/elife.69601] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein, tau, is the major subunit of neurofibrillary tangles associated with neurodegenerative conditions, such as Alzheimer's disease. In the cell, however, tau aggregation can be prevented by a class of proteins known as molecular chaperones. While numerous chaperones are known to interact with tau, though, little is known regarding the mechanisms by which these prevent tau aggregation. Here, we describe the effects of ATP-independent Hsp40 chaperones, DNAJA2 and DNAJB1, on tau amyloid-fiber formation and compare these to the small heat shock protein HSPB1. We find that the chaperones play complementary roles, with each preventing tau aggregation differently and interacting with distinct sets of tau species. Whereas HSPB1 only binds tau monomers, DNAJB1 and DNAJA2 recognize aggregation-prone conformers and even mature fibers. In addition, we find that both Hsp40s bind tau seeds and fibers via their C-terminal domain II (CTDII), with DNAJA2 being further capable of recognizing tau monomers by a second, distinct site in CTDI. These results lay out the mechanisms by which the diverse members of the Hsp40 family counteract the formation and propagation of toxic tau aggregates and highlight the fact that chaperones from different families/classes play distinct, yet complementary roles in preventing pathological protein aggregation. Several neurological conditions, such as Alzheimer’s and Parkinson’s disease, are characterized by the build-up of protein clumps known as aggregates. In the case of Alzheimer’s disease, a key protein, called tau, aggregates to form fibers that are harmful to neuronal cells in the brain. One of the ways our cells can prevent this from occurring is through the action of proteins known as molecular chaperones, which can bind to tau proteins and prevent them from sticking together. Tau can take on many forms. For example, a single tau protein on its own, known as a monomer, is unstructured. In patients with Alzheimer’s, these monomers join together into small clusters, known as seeds, that rapidly aggregate and accumulate into rigid, structured fibers. One chaperone, HSPB1, is known to bind to tau monomers and prevent them from being incorporated into fibers. Recently, another group of chaperones, called J-domain proteins, was also found to interact with tau. However, it was unclear how these chaperones prevent aggregation and whether they bind to tau in a similar manner as HSPB1. To help answer this question, Irwin, Faust et al. studied the effect of two J-domain proteins, as well as the chaperone HSBP1, on tau aggregation. This revealed that, unlike HSBP1, the two J-domain proteins can bind to multiple forms of tau, including when it has already aggregated in to seeds and fibers. This suggests that these chaperones can stop the accumulation of fibers at several different stages of the aggregation process. Further experiments examining which sections of the J-domain proteins bind to tau, showed that both attach to fibers via the same region. However, the two J-domain proteins are not identical in their interaction with tau. While one of them uses a distinct region to bind to tau monomers, the other does not bind to single tau proteins at all. These results demonstrate how different cellular chaperones can complement one another in order to inhibit harmful protein aggregation. Further studies will be needed to understand the full role of J-domain proteins in preventing tau from accumulating into fibers, as well as their potential as drug targets for developing new treatments.
Collapse
Affiliation(s)
- Rose Irwin
- Weizmann Institute of Science, Rehovot, Israel
| | - Ofrah Faust
- Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
8
|
Takaichi Y, Chambers JK, Ano Y, Takashima A, Nakayama H, Uchida K. Deposition of Phosphorylated α-Synuclein and Activation of GSK-3β and PP2A in the PS19 Mouse Model of Tauopathy. J Neuropathol Exp Neurol 2021; 80:731-740. [PMID: 34151989 DOI: 10.1093/jnen/nlab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The simultaneous accumulation of multiple pathological proteins, such as hyperphosphorylated tau (hp-tau) and phosphorylated α-synuclein (p-αSyn), has been reported in the brains of patients with various neurodegenerative diseases. We previously demonstrated that hp-tau-dependent p-αSyn accumulation was associated with the activation of GSK-3β in the brains of P301L tau transgenic mice. To confirm the effects of another mutant tau on p-αSyn accumulation in vivo, we herein examined the brains of PS19 mice that overexpress human P301S mutant tau. Immunohistochemically, hp-tau and p-αSyn aggregates were detected in the same neuronal cells in the cerebrum and brain stem of aged PS19 mice. A semiquantitative analysis showed a positive correlation between hp-tau and p-αSyn accumulation. Furthermore, an activated form of GSK-3β was detected within cells containing both hp-tau and p-αSyn aggregates in PS19 mice. Western blotting showed a decrease in inactivated PP2A levels in PS19 mice. The present results suggest that the overexpression of human P301S mutant tau induces p-αSyn accumulation that is accompanied by not only GSK-3β, but also PP2A activation in PS19 mice, and highlight the synergic effects between tau and αSyn in the pathophysiology of neurodegenerative diseases that show the codeposition of tau and αSyn.
Collapse
Affiliation(s)
| | - James K Chambers
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Yasuhisa Ano
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Akihiko Takashima
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Hiroyuki Nakayama
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| | - Kazuyuki Uchida
- From the Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo (YT, JKC, HN, KU); Research Laboratories for Health Science & Food Technologies and the Central Laboratories for Key Technologies, Kirin Company Ltd, Kanagawa (YA); Department of Life Science, Faculty of Science, Gakushuin University, Tokyo (AT), Japan
| |
Collapse
|